
Technical Report
CMU/SEI-88-TR-21
ESD-TR-88-22

Carnegie-Mellon University

Software Engineering Institute

Experiment Transcripts for the
Evaluation of the Rational
Environment

Grace Downey
Mitchell Bassman, Computer Sciences Corporation
Carl Dahlke, Computer Sciences Corporation

September 1988

/' \ ADAZO^

Technical Report
CMU/SEI-88-TR-21

ESD-TR-88-22

September 1988

Experiment Transcripts for the
Evaluation of the Rational Environment

Grace Downey
Evaluation of Environments Project

Mitchell Bassman
Carl Dahlke

Computer Sciences Corporation

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/AVS
HanscomAFB, MA 01731

The ideas and findings in this report should not be construed as an official
DoD position. It is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Karl H. Shingler v^
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1986 by Carnegie Mellon University.

This document is available through the Defense Technical Information Center. OTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact OTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria. VA 22304-6145.

Copies of this document are also available through the National Technical Information Service. For information on ordering.
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce. Springfield. VA 22161.

The use of any trademark in this publication is not intended in any way to infringe on the rights of the trademark holder.

Reviewed and edited by Information Management, a function of the Technology Transition Program, Software Engineering
Institute.

Table of Contents

1. Introduction 1
1.1. Scope 1
1.2. Evaluation Experiments Performed 1

1.2.1. Configuration Management/Version Control Experiments 1
1.2.2. System Management Experiments 2
1.2.3. Design and Development Experiment 2
1.2.4. Unit Testing and Debugging Experiment 2
1.2.5. The Project Management Experiment 3
1.2.6. Prototype Ada Compiler Evaluation Capability (ACEC) 3
1.2.7. Appendices 3

1.3. Environment Version and Hardware Evaluated 3
1.4. Report Structure 4

2. Configuration Management/Version Control Experiments 5
2.1. Introduction 6
2.2. Experiment #1 7
2.3. Experiment #1 Functionality Checklist 27
2.4. Experiment #2 28
2.5. Experiment #2 Functionality Checklist 41
2.6. Experiment #1 Answers 42
2.7. Experiment #2 Answers 49
2.8. Configuration Management/Version Control (CM/VC) Analysis 50

2.8.1. Functionality 50
2.8.2. Performance 51
2.8.3. User Interface 51
2.8.4. System Interface 52

3. System Management Experiments 53
3.1. Introduction 53
3.2. Experiment #2 54
3.3. Experiment #2 Functionality Checklist 58
3.4. Experiment #4 58
3.5. Experiment #2 Answers 60
3.6. Experiment #3 Answers 66
3.7. Experiment #4 Answers 69
3.8. System Management Analysis 73

3.8.1. Functionality 73
3.8.2. Performance 74
3.8.3. User Interface 74
3.8.4. System Interface 75

CMU7SEI-88-TR-21

4. Design and Development Experiment 77
4.1. Introduction 77
4.2. Experiment 78
4.3. Functionality Checklist 97
4.4. Experiment Answers 98
4.5. Design and Development Analysis 113

4.5.1. Functionality 113
4.5.2. Performance 114
4.5.3. User Interface 115
4.5.4. System Interface 116

5. Unit Testing and Debugging Experiment 117
5.1. Introduction 117
5.2. Experiment 117
5.3. Functionality Checklist 132
5.4. Experiment Answers 134
5.5. Unit Testing and Debugging Analysis 141

5.5.1. Functionality 141
5.5.2. Performance 142
5.5.3. User Interface 142
5.5.4. System Interface 143

6. Prototype ACEC 145
6.1. Introduction 145
6.2. Implementing the Prototype ACEC 146

6.2.1. Implementation Choices 146
6.2.2. Problems Found in the ACEC Suite 147

6.3. Numeric Results 149
6.3.1. Aggregate Measurements for All Tests 149
6.3.2. Aggregated Measurements for Each Architecture Category 150
6.3.3. Measurement on 28 Optional Algorithms from ACEC Suite 153
6.3.4. Comparison of Executable Image Size 155

6.4. Prototype ACEC Analysis 156

7. Cross Environment Performance Comparison 159

Appendix A. Size and Time Reporting Procedures 165
A.1. Specification Record_Size'Spec 165
A.2. Procedure Record_Size'Body 166
A.3. Using Record_Size 166
A.4. Specification Timeit'Spec 167
A.5. Procedure Timeit'Body 167
A.6. Using Timeit 168

CMU/SEI-88-TR-21

Appendix B. Design and Development Instrumentation Procedures 169
B. 1. Package Kluge_Stuff 169
B.2. Specification Timed_Code'Spec 169
B.3. Procedure Timed_Code'Body 169
B.4. Specification Finish_Coding_lnstrumentation'Spec 171
B.5. Procedure Finish_Coding_lnstrumentation'Body 171
B.6. Specification Timed_Directory'Spec 175
B.7. Procedure Timed_Di rectory'Body 175
B.8. Specification Timed_World'Spec 177
B.9. Procedure Timed_World'Body 177
B.10. Specification Sized_Copy'Spec 179
B.11. Procedure Sized_Copy'Body 179
B.12. Binding and Using Instrumentation Code 181

Appendix C. ACEC Suite Timing Harnesses 183
C. 1. Package Specification Cpu_Time'Spec 183
C.2. Package Cpu_Time'Body 183
C.3. Specification Harness_Many'Spec 183
C.4. Procedure Harness_Many'Body 183
C.5. Harness (Source State to Coded State) 185
C.6. Harness (Text File to Loaded Main Programs) 187
C.7. Commands to Run the ACEC Test Suite 189

CMU/SEI-88-TR-21 ill

IV CMU/SEI-88-TR-21

List of Tables

Table 6-1: Aggregated Measurements for All Tests
Table 6-2: Compilation Results
Table 6-3: Instrumentation Results
Table 6-4: Run-Time Results
Table 6-5: Compilation Time
Table 6-6: Instrumentation Quantity
Table 6-7: Run Time Quantity
Table 6-8: Optional Algorithms Programs
Table 6-9: Size of Ada Source Comparison Programs
Table 6-10: Comparison of Executable and Program Library Sizes

149
150
151
152
153
153
154
154
155
155

CMU/SEI-88-TR-21

Experiment Transcripts for the Evaluation of the
Rational Environment

Abstract: This report supplements the SEI report Evaluation of the Rational
Environment (CMU/SEI-88-TR-15) by Peter Feiler, Susan Dart, and Grace Downey. It
contains the instantiation of the experiments presented in the Evaluation of Ada
Environments by Nelson Weiderman, et al. (see [7]). Overall conclusions and analysis
of the Rational Environment can be found in Evaluation of the Rational Environment.

1. Introduction

1.1. Scope

The evaluation of the Rational Environment and R1000 computer was initially conducted by Com-
puter Sciences Corporation (CSC) using the Gamma Release of the Rational Environment. Au-
thors of an internal CSC report released in January of 1987 were Mitchell J. Bassman and Carl
Dahlke (see [3]). The instantiation of the experiments on the Gamma Release of the Rational
Environment were written and performed by Carl Dahlke, Diane E. Odiorne, and Katherine
E. Stanton at CSC's Star* Lab. This report contains the results of repeating the experiments on
the Delta Release of the Rational Environment at the Software Engineering Institute (SEI). The
Delta Release of the Rational Environment provides the initial release of configuration manage-
ment and version control tools. This report contains the results of instantiating the Configuration
Management/Version Control Experiments from the Evaluation of Ada Environments. Grace
Downey repeated the experiments according to the CSC transcripts, adjusted the transcripts for
the Delta Release, and instantiated and performed the Configuration Management/Version Con-
trol Experiments. Analysis of the Rational Environment and analysis of the experiment results are
provided by Peter Feiler, Susan Dart and Grace Downey in Evaluation of the Rational
Environment (SEI-88-TR-15).

1.2. Evaluation Experiments Performed

Of the six categories of experiments presented in the Evaluation Method, five were performed on
the Delta Release of the Rational Environment. A brief description of each experiment follows.

1.2.1. Configuration Management/Version Control Experiments
This group of experiments provides an evaluation of an environment's version control capabilities
(i.e., support of successive versions, variant versions, file checkin/checkout, etc.) as well as its
configuration management capabilities (i.e., support of system construction and reconstruction,
baselining, release management, history collection, etc.). The first of three experiments simu-
lates the system integration and testing phase of the software development cycle. The second
experiment assumes the first has been conducted and investigates system construction,
reconstruction of previously baselined systems, and a combination of elements from old and new

CMU/SEI-88-TR-21

systems. Chapter 2 contains the instantiation of the first two experiments. The third experiment
investigates software management activities, including release control and release history. Ra-
tional expects the user to tailor commands from work order, configuration management, and
version control commands to enforce a software management policy. The third experiment was
not performed because it does not specify a software management policy nor does the Rational
Environment dictate one.

1.2.2. System Management Experiments
Four aspects of system management are separately evaluated: Ada Programming Support Envi-
ronment (APSE) installation, user account management, environment maintenance and support
for machine usage accounting.

Rational technicians perform ail APSE installation and updating, and the procedures used are not
described in the documentation for system managers; therefore, the APSE installation experiment
was not performed.

User account management is largely concerned with controlling access to user accounts. The
Gamma Release of the Rational Environment did not provide any access control capabilities
except for requiring an operator password to execute certain environment commands. The Delta
Release, however, does provide access control functionality. Therefore, the experiment was
re-instantiated and includes the steps which exercise the access control facilities.

The environment maintenance experiment consists of a series of questions, which were an-
swered.

Little of the Environment Maintenance and Support for the Machine Usage Accounting Exper-
iment had to be instantiated for the Rational Environment, as most of the functionality requested
already exists in commands provided by the Environment. The experiment is presented through
descriptions of how to access and use the environment-supplied accounting information.

1.2.3. Design and Development Experiment
The Rational Environment provides most of the capabilities evaluated by the design and devel-
opment experiment category. Some steps of the experiment were omitted because the Rational
Environment does not supply any graphical design interface tools. The experiment consists of
developing a small system consisting of several Ada units. Creating procedures and packages,
compiling, and changing the procedures and packages constitute many of the steps of the exper-
iment.

1.2.4. Unit Testing and Debugging Experiment
The Rational Environment provides most capabilities evaluated by the Unit Test and Debug Ex-
periment category. Again, some steps of the experiment were omitted because the Rational
Environment provides no supported static or dynamic analysis tools. The experiment consists of
testing a small system of Ada units, debugging and changing the units, and regression testing.

CMU/SEI-88-TR-21

1.2.5. The Project Management Experiment
The Project Management Experiment (see [5]), by Peter H. Feiler and Roger Smeaton, evaluates
an environment's ability to support four categories of project management: project plan manage-

ment, plan instantiation, project execution, and product management. The level of support that
the Rational Environment provides in these areas is tested in the Configuration

Management/Version Control Experiments; hence, this experiment is not instantiated for the Ra-

tional Environment.

1.2.6. Prototype Ada Compiler Evaluation Capability (ACEC)
The prototype Ada Compiler Evaluation Capability (ACEC) test suite was run on the Rational

Environment. The institute for Defense Analysis (IDA) developed the test suite from public
domain software, and the suite and its use is described in IDA PAPER P-1879, User's Manual for
the Prototype Ada Compiler Evaluation Capability (ACEC) Version 1, by Audrey A. Hook, Gregory
A. Riccardi, Michael Vilot, and Stephen Welke (see [1]). Numeric results from running the ACEC
suite, problems with the suite detected by the Rational Environment, and some tailoring required
for the Rational Environment are reported.

1.2.7. Appendices
The appendices to this document consist of code developed specifically for the Rational Environ-

ment to perform measurements for some of the experiments. The Prototype ACEC suite requires

that some environment-specific code be developed; this is presented as well.

1.3. Environment Version and Hardware Evaluated

The evaluation of the Rational Environment was performed with the following hardware configu-
ration and software configuration. The hardware configuration is a R1000 Model 200-20 with the

following components:

• 32 Mb of primary memory.

• Approximately 2,010 Mb of unformatted disk storage (3 disks with approximately 670
Mb capacity each).

• Tape drive PE/GCR 75 ips streaming tape.

• Ethernet connection.

• 8 Rational terminals connected to the R1000 over the Ethernet via a DECserver.

The software configuration is release D_9_25_1 or DeltaO of the Rational Environment. The
environment evaluated was the base environment, which comes as one package and includes
the following:

• Basic operating system functionality, such as file and directory system, process man-
agement, access control, etc.

• A tiled window system for character terminals.

• An Ada command processor.

• An editor and browser sensitive to Ada syntax and semantics.

CMU/SEI-88-TR-21

• An incremental Ada compilation system.

• A debugging system with extensive coverage of the Ada language.

• Programming-in-the-large support in the form of the subsystem concept.

• Configuration management and version control support.

• Workorder management support.

Unsupported tools contributed by users include a reusable component library, metric collection
tools, and browsing tools. These packages were not included in the evaluated environment
because they either are unsupported tools or they were not available to the evaluators at the time
of evaluation.

1.4. Report Structure

Chapters 2 through 6 each represent one experiment category of the SEI evaluation method as it
was performed on the Rational Environment.

• Chapter 2 - Configuration Management/Version Control Experiments

• Chapter 3 - System Management Experiments

• Chapter 4 - Design and Development Experiments

• Chapter 5 - Unit Testing and Debugging Experiments

• Chapter 6 - Prototype ACEC

An introduction in each chapter outlines the experiment and explains the notation used in the
experiment transcripts. Some categories contain multiple experiments. The experiment
transcripts are then presented, followed by a checklist summarizing the functionality provided or
not provided by the Rational Environment. Questions associated with each of the experiments
are answered. A brief conclusion to each experiment discusses the Environment's capabilities in
terms of functionality, performance, user interface, and system interface. Any problems encoun-
tered in instantiating the experiment are discussed in the functionality subsections of these con-
clusions.

Previous SEI environment evaluations included command files that instantiate the experiments.
Because the Rational Environment is intended for use as an interactive environment, each exper-
iment step is listed, followed by a "script" of Rational commands necessary to perform the step.
The transcripts of the Configuration Management/Version Control Experiments and System Man-
agement Experiments explore the Environment commands more closely by detailing the
commands' program interface. The transcripts of the Design and Development and Unit Testing
and Debugging Experiments are more terse because many of the Environment commands are
bound to program function keys. In order to provide a better flavor of how the Environment can
be used interactively, actual keystrokes are shown, rather than the program interface bound to
the keys.

The final chapter contains a cross-environment comparison of the Rational Environment and
previously evaluated Environments in terms of performance figures.

4 CMU/SEI-88-TR-21

2. Configuration Management/Version Control
Experiments

The Configuration Management/Version Control (CM/VC) Experiments exercise the version con-

trol capabilities of the Environment. The first experiment simulates the system integration and

testing phase of the life cycle by having three separate development lines of descent from a
single baselined system. The second experiment investigates the Environment's support for

activities such as system construction, reconstruction of previously generated baselined systems,
and the construction of a mixture of new and old systems.

The third experiment in the area of configuration management investigates the activities involved
in the management of a software product, including release control and release history. Although
the Rational Environment provides the capability to track release control and release history
through the work order management package, this package represents a primitive set of com-

mands. Rational expects the user to construct a series of "skins" which invoke the work order
commands, and to some extent the configuration management commands to enforce company

policy. No "company policy" is presented in the third experiment, and for this reason the exper-
iment is not instantiated. For a discussion of the work order management package, see
Evaluation of the Rational Environment (see [4]).

The system described by the experiment is broken into three subsystems: VT, CLI, and SM. The
subsystem boundary described by the experiment could have been ignored, and all units placed
in one large subsystem. The functionality tested by the experiment would have been easily
covered by the CM/VC facilities in the Environment. To more fully exercise the CM/VC package,
the three experiment subsystems were instantiated as Rational Environment subsystems. A

main program that depends on Ada units in each of the three systems is also provided, and acts
as a subsystem driver through the course of the first experiment. To make use of more features
provided by configuration management and version control packages in the Delta Release, the

main program was placed in a fourth subsystem, MAIN.

Yet a fifth subsystem, AS, was required to instantiate the experiment due to a bug in the
Cmvc.Release command. A package specification in SM depends upon two packages contained
in the subsystem CLI. A separate subunit in CLI depends upon three packages in SM. Accord-
ing to the description of the CMVC. Initial command in Rational Environment Reference Manual
11, Project Management, if the parameter Subsystem_Type is set to Cmvc.Combined when sub-
systems are created, then circular import relations may hold between the subsystems. In an
initial performance of the experiment, SM and CLI were created as combined views, SM was set

to import CLI, and CLI was set to import SM. When the Cmvc.Make_Release command was
issued to release the subsystems, the execution of the command never finished. The subsystem

AS bree-<s the import circularity and consists of package Aim_Support and package specification

and body for StringJJtilities, which were originally assigned to subsystem CLI by the experiment
description.

CMU/SEI-88-TR-21

2.1. Introduction

The following two sections describe the instantiation of the two configuration management experi-
ments. In each section the numbered experiment step is listed, followed by an overview of the
Rational commands shown in braces ({ }), and finally a detailed list of the Rational commands.
The experiment was conducted in a world created within the home world of a Rational user. The
context for the experiment is presented as HJser.experimenter. If repeating the experiment is
desired, a user may substitute a home world name where experimenter appears in the exper-
iment transcripts.

The transcript indicates specific key commands by showing the key's label enclosed in angle
brackets (e.g., <Promot>). The first time a command is used, all of its parameters and their
values are detailed. Parameter values that must be supplied or that vary from the default are
written in italics. Any subsequent uses of the command are listed with only required parameters
or parameter settings that vary from the Rational Environment default settings written in italics.

The following paragraphs are examples of how to change current context, issue commands, and
select an object. They are provided here once, so that the detailed list of Rational commands
need not be an exact transcript of keystrokes.

The following sequence of key commands may be used to change to an example context direct-
ory .'users, experimenter, cmjaxperiment. cli:

<Prampt Tor>
<Definition> — A command window opens

— containing:
Common.Definition (Name => "<CURSOR>",

In_Place => False,
Visible => True);

The cursor is automatically placed at the parameter value for Name, enter the value for Name, by
typing:

!users.experimenter.cm_experiment.cli
<Promot>

The cursor moves to the window least recently used, and a listing of the directory's contents
!users.experimenter.cm_experiment.cli appears in the window.

Another method of changing contexts is to use the <Definition>, <Enclosing>, and cursor move-
ment or arrow keys. For example, if the cursor is already in a window whose context is
!users.experimenter\o make lusers.experimentar.cm_experiment.cliVne current context:

<down arrow> — Press until the cursor is
— on the line cm_experiment ;

<Definition> — the cursor will move to a window
— which will show the
— lusers. experimenter, cmjexperiment
— context.

<down arrow> — Press until the cursor is
— on the line cli.

<De£inition>

CMU/SEI-88-TR-21

The cursor moves to a window listing the contents of the directory

!users.experimenter.cm_experiment.cli. To move to the parent of the current context, press the
key <Enclosing>. By combining the use of the <Enclosing>, cursor movement, and <Definition>

keys, any context can be reached by traversing the directory tree structure.

Once the cursor is positioned in the correct context, the steps to issue and execute a command
Command_Name are as follows:

<Create Command> — A command window opens.
Command_Name — Type in the command, or

— a unique prefix of the
—— command.

<Complt> — The command will be
— displayed with all
— parameters and their
— defaults.

The cursor is automatically placed at the value for the first parameter. To change the parameter,

type the desired value. To change other parameters, move the cursor to the parameter value
either with the arrow keys, or the <Next ltem> key, and type the desired value. To start execution

of the command, press the <Promot> key. A command has executed without error if no error
message appears in the system message window at the top of the Rational screen, or if in the
output window created by the command, no asterisks (*) appear in the left column.

To select an object, make the context containing the object the current context. Place the cursor

on the line containing the object, and press the <Object> key, followed by the <Left Arrow> key;
The object is then displayed in brighter characters to indicate that it is selected. Some com-

mands have a default parameter setting of <SELECTION>; the environment resolves

<SELECTION> to be an object that is selected in the window to which the command window is
attached. It is often faster to select object, and allow <SELECTION> to resolve to that object.

2.2. Experiment #1

1. Experiment setup

a. Create subdirectory in which the experiment will be performed.

{The subsystems MAIN, CLI, SM, VT, and AS will all be subdirectories of
Rational World "!Users.experimenter.Cm_Experiment".}

{Make ! Users . experimenter the current
context}
<Create_World>
Library. Create_World (Name => " cm_experiment" ,

Kind => Library.World,
Vol => Library.Nil,
Model =>
"Model. R1000_Portable",
Response => "<PROFILE>");

b. Establish environment variables to be used in the experiment.

{None are used; the logical names assumed by the experiment will be used
as subsystem names.}

CMU/SEI-88-TR-21 7

c. Develop a command named record to collect data file size measurement.

{See Appendix A.}

d. Develop a command named timelt to collect execution time measurements
for any environment command.

{See Appendix A.}

2. Establish Ada program library structure for system integration.

{Use the Cmvc. Initial command to build an initial spec/load working view for the
subsystems VT, AS, SM, CLI, and MAIN.}

{Make the Cm_Experiment world the current context.}
Cmvc.Initial(Subsystem => "VT",

Working_View_Base_Name => "Revl",
Subsystem_Type => Cmvc.Spec_Load,
View_To_Import => "",
Model => "R1000_Portable",
Comments => "",
Work_Order => "<DEFAuXT>",
Volume => 0,
Response => "<PROFILE>");

{Repeat the Cmvc.Initial command as above, while CM_Experiment is the current
context for each of the other subsystems: SM, CLI, AS, and MAIN. Allow the de-
fault, "Rev1," to be the working view base name for all the subsystems.}

3. Copy existing subsystems into integration program library structure. Assume the
existence of logical names: (AS), VT, CLI, SM, and MAIN, which are symbolic links
to directories containing the source code of the respective subsystems. Using
these logical names, copy all the files in each of the indicated source directories
(AS, VT, CLI, SM, and MAIN) into the integration program library structure. Record
initial source file sizes.

{Assume that !Users.experimenter. Cmvc_Source with subworlds VT, CLI, SM,
MAIN, and AS exist. Each subworld contains its Ada source units. Use the Library
Copy command and its recursive copy parameter to move the Ada source units into
the subsystem structure set up above.}

{Make I Users, experimenter. Cmvc_Source the current
context.}
Library.Copy

(From =>
" !Users.experimenter.Cmvc_Source.As",
To =>
" lUsers.experimenter. Cm_Experiment.

As.Rev1_Working.Units",
Recursive => True,
Copy_Links => False,
Response => <PROFILE>;

{Put the Ada units placed in the initial spec/load working view under access control
by using the Cmvc.Make_Controlled command and the wildcard to indicate all units
in the directory.}

8 CMU/SEI-88-TR-21

{Make ! Users . experimenter. Cm_Experiment.
As .Revl_Working.Units the current context.)

Cmvc.Make_Controlled(What_Object => "<§>",
Reservation_Token_Name =>

"<AUTO_GENERATE>",
Join_With_View => "<None>",
Comments => "",
Work_Order => "<DEFAULT>",
Response => "<PROFILE>");

{Repeat the above procedures (Library.Copy and Cmvc.Make_Controlled) for each
of the subsystems (CLI, MAIN, SM, and VT), placing the subsystem's Ada units into
the appropriate Rev1_Working.Units subdirectory, and placing the Ada units under
access control.}

4. Define a new (integrated) system model from existing subsystems. This system
model specifies the compilation dependencies in effect when integrating all of the
individual subsystems.

(Create for each subsystem a spec view composed of the default—a copy of all the
package specifications within the subsystem.}

{Make ! Users . experimenter. Cm_Experiment. As
the current context, and place the cursor on
Revl_Working.}
Cmvc.Make_Spec_View(From_Path => "<CURSOR>",

Spec_View_Prefix => "As",
Level => 0,
View_To_Modify => "",
View_To_Import =>

"<INHERIT_IMPORTS>",
Only_Change_Tmports => True,
Remake_Demoted_Units => True,
Goal => Compilation.Coded,
Comments => "",
Work_Order => "<DEFAULT>",
Volume => 0,
Response => "<PROFILE>");

(Repeat the creation of spec views for subsystems SM, CLI, and VT, giving the
Spec_View_Prefix as "Sm," "Cli," and "Vt," respectively.}

(Due to a bug in the Make_Spec_View command, the specification units copied to
the spec view are not automatically promoted to the state indicated by the Goal
parameter. It is necessary to visit all spec views and promote any units they con-
tain to coded state. Because of dependencies between the spec views, the order in
which the spec views are promoted is important.}

{Make ! Users . experimenter. Cm_Experiment. Vt.
the current context, and place cursor on
Vt_0_Spec.}
<Code (This World)>

(Promote the Ada units in !Users.expen'menfer.Cm_Experiment.As.As_0_Spec to
coded state also. Before the Ada units in !Users.expe/T'menfer.Sm.Sm_0_Spec and
!Users.exper/menfe/'.CIi.Cli_0_Spec can be promoted, imports for these spec views
must be created. The spec view of SM depends upon definitions in the spec view
of AS and VT. The spec view of CLI depends upon definitions in the spec view of
AS.

CMU/SEI-88-TR-21

{Make ! Users . experimenter. Cm_Experijnent. Sm. Sm_0_Spec
the current context.}
Cmvc. import (view_To_in»port => lUsers.experimenter.

CmJExperiment.
[As.As_0_Spec, Vt. Vt_0_Spec],

Into_View => "<CURSOR>",
Only_Change_Tmport s => False,
Import_Closure => False,
Remake_Demoted__Units => True,
Goal => Compilation.Coded,
Comments => "",
Worlt_Order => "<DEFAULT>",
Response => "<PROFILE>");

{Place cursor on
I Users . experimenter. Cm_Experiment. Sm. Sm_0_Spec.}
<Code (This World)> "
{Make ! Users . experimenter. Cm_Experiment. Cli. Cli_0_Spec
the current context.}
Cmvc. import (View_To_import => lUsers.experimenter.

Cm_Experiment.As.As_0_Spec);
{Check that cursor is on
! Users . experimenter. Cm_Experiment. Cli. Cli_0_Spec.}
<Code (This World)> "

{Create the import list tor each subsystem's working load view; MAIN imports the
spec views of VT, CLI, and SM. The order in which these imports are performed is
unimportant; they must only occur before attempts to compile units in the working
load views of the subsystems.}

{Make ! Users . experimenter. Cm_Experi ment.Main.
Revl_Working.Units the current context.)
Cmvc.Import(View_To_Import =>

lUsers. experimenter. Cm_ Experiment.
[Vt.Vt_0_Spec, Cli.Cli_0_Spec,
Sm.Sm_0_Spec]) ;

{CLI imports the spec views of AS, VT, and SM:}

{Make ! Users . experimenter. Cm_Experiment. Cli.
Revl_Working.Units the current context.)
Cmvc.Import(View_To_Import =>

lilsers. experimenter. Cm_ Experiment.
[As.As_0_Spec, Vt. Vt_0_Spec,
Sm.Sm_0_SpecJ);

{SM imports the spec view of VT and AS:}

{Make ! Users . experimenter. Sm_Experiment. Sm.
Revl_Working.Units the current context.)
Cmvc.Import(View_To_Import =>

lUsers. experimenter. CmJExperiment.
[As.As_0_Spec, Vt. Vt_0_Spec]) ;

{Create the Activity Table, which is a listing of subsystems with their corresponding
spec views and load views.}

10 CMU/SEI-88-TR-21

{Make ! Users . experimenter. Cm_Experiment
the current context.}
Activity.Create(The_Activity => "AIM_B01" ,

Source => Activity.Nil,
Mode => Activity.Exact_Copy,
Response => "<PROFILE>");

(Make AIMJ301 the current context; insert entries. The order in which entries are
added is not important as the editor maintains them in alphabetical order by subsys-
tem name.}

<Object> I
Insert (Subsystem => "Main",

Spec_View => "",
Load_view => "Rev1_Working") ;

<Object> I
Insert (Subsystem => " Sm" ,

Spec_view => " Sm_0_Spec" ,
Load_view => "Rev1_Working") ;

<Object> I
Insert (Subsystem => "Cli",

Spec_View => " Cli_0_Spec" ,
Load_view => "Rev1_Worklng");

<Object> I
Insert (Subsystem => " Vt" ,

Spec_View => "Vt_0_SpeC",
Load_view => "Rev1_Working") ;

<Object> I
Insert(Subsystem => "As",

Spec_View => "As_0_Spec",
Load_view => "Rev1_Working") ;

{The entries must be saved by typing:}
<Enter>

{Make AIM_B01 the default activity with the following
commands:}
Set_Default(The_Activity => "AIM_B01",

Response => "<PROFILE>");

5. Build an executable load module named AIM_B01_EXE from all the Ada source
code files; use the system model defined in Step 4 where appropriate. Measure
time taken to perform the build.

{Promote all the Ada units in the load views to coded state, using the
Compilation.Promote command, which relies on the subsystem structure and im-
ports to determine compilation order.}

CMU/SEI-88-TR-21 11

{Make ! Users . experimenter. Cm_Experiment
the current context.}
Compilation. Promote (Unit => " $.[Main,As, Vt,Sm,Cli].

Rev1_Working",
Scope =>

Compilation.Subunits_Too,
Goal => Compilation. Coded,
Limit => "<ALL_WORLDS>",
Ef£ort_Only => False,
Response => "<PROFILE>");

{Select and promote Main in subsystem MAIN, to cause a link of the closure and
the creation and execution of a load module.}

{Make ! Users . experimenter. Cm_E3cperimant.Main.
Revl_Working.Units the current context; select
Main'body.}
<Promot>
{Observe the creation of an output window, and
"It works!" appears in the window.}

6. Construct a configuration baseline named B0.1 of the current system. Measure
time taken to create the CM files. Record initial sizes of CM files. Measure time
taken to perform baseline operation.

{Release all of the subsystems and create an Activity which specifies the spec
views and released load views. Note that because the Cmvc.Release command is
actually making a copy of each subsystem, it takes some time to complete.}

12 CMU/SEI-88-TR-21

{Make ! Users. experimenter. Cm_Experiment
the current context}
Cmvc.Release(From_Working_View —>

" lUsers.expehmenter. Cm_Experiment.
[Main, Sm, Cli, Vt, As].Rev1_Working"
Release_Name => "<AUTO_GENERATE>",
Level => 0,
Views_To_Import => "<INHERIT_IMPORTS>",
Create_Configuration_Only => False,
Coxnpile_The_View => True,
Goal => Compilation.Coded,
Comments => "",
Work_Order => "<DEFAULT>",
Volume => 0,
Response => "<PROFILE>");

Activity.Create(The_Activity => "B0_1",
Source => "Aim_B01") ;

NOTE: The value for the parameter Source must
be in quotes.

{Make !Users. experimenter. Cm_Experiment. B0_1
the current context and insert entries with
the following commands:}
<Object> I
Insert (Subsystem => "Main",

Spec_View => "",
Load_View => "Rev1_0_1") ;

<Object> I
Insert (Subsystem => "Sm",

Spec_View => "",
Load_View => " Rev1_0_ 1") ;

<Object> I
Insert(Subsystem => " CH" ,

Spec_View => "",
Load_View => " Rev1_0_1") ;

<Object> I
Insert (Subsystem => " Vt',

Spec_View => "",
Load_View => " Rev 1_0_ 1") ;

<Object> I
Insert(Subsystem => "As",

Spec_View => "",
Load_View => " Rev 1_0_ 1") ;

{Save the new entries in the activity by typing:}

<Enter>

7. Parallel test the integrated system using three variants of main program (MAIN.A,
MAIN.B, MAIN.C). Measure time for single file fetch, reserve, and replace
operations.

MAIN.A - test VT interfaces

MAIN.B - test CLI interfaces

CMU/SEI-68-TR-21 13

MAIN.C - test SM interfaces

{Create 3 parallel development paths from the released subsystem MAIN--vttester,
ciitester and smtester. Note that these names would be much more readable as
"vtjester," "clijester," and "sm_tester"; however, due to a limitation of the
Cmvc. Build command used later, no underscores (J can be used in a user-
designated pathname.}

{Make ! Users . experimenter. Cm_Experiment.Main
the current context}
Cmvc.Make_Path(From_Path =>

" lUsers.experimenter.
Cm_Experiment. Main. Rev 1_0_ 1",

New_Path_Name => " Vttester,
View_To_Modi£y => "",
View_To_Import => "<INH£RIT_IMPORTS>",
Only_Change_Imports => True,
Model => "<INHERIT_MODEL>" ,
Join_Paths => False,
Remake_Demoted_Units => True,
Goal => Compilation.Coded,
Comments => "",
Work_Order => "<DErAULT>",
Volume => 0,
Response => "<PROFILE>");

Cmvc .Make_Path (From_Path =»>
" lUsers.experimenter.

CmJExperiment. Main. Rev 1_0_ 1",
Ne*_Path_Name => "Ciitester",
Join_Paths => False) ;

Cmvc.Make_Path(From_Path =>
" lUsers.experimenter.

Cm_Experiment. Main. Rev 1_0_ 1",
New_Path_Name => "Smtester",
Join_Paths => False) ;

a. Test VT interfaces.

i. Build executable load module named VTMAIN using MAIN.A as
the main program. Measure time taken to perform the build.

14 CMU/SEI-88-TR-21

{Make ! Users . experimenter. Cm_Experiment.
Main.Vttester_Working.Units.Main'body the
current context}
<Check Out>
<Install Unit>
{Place cursor in body, after the
Text_IO.Put_Line statement.}
<Object> I
{An edit window opens and the
cursor is placed in it automatically;
insert the code line:
Text_IO.Put_line

("This is the VT Driver.");}
<Format>
{Place the new code line back
into the program.}
<Promot>
{Return the entire unit to
coded state.}
<Promot>
<Check ln>

ii. Fix bugs in VT body (using variant line of descent). Measure time
taken for creating a variant line of descent. Measure CM file size
increase caused by variant.

(Since other programmers working on the system will be linked with
the release version of subsystem VT, the programmer responsible
for updates to Page_Terminal'body can continue to work in the
Rev1_Working version of the subsystem.)

{Make ! Users . experimenter. Cm_Experiment. Vt.
Revl_Working.Units.Page_Terminal'body the
current context.}
<Check Out>
<Edit>
{Replace the null statement with:
Text_IO.Put_Line
("Elaborating Page_Terminal Body.");}
<Format>
<Code Unit>
<Check In>

iii. Construct a configuration baseline named B0.2 of the current sys-
tem using MAIN.A as the main program. Record current sizes of
CM files. Measure time taken to perform baseline operation.

(Create a release of the VT subsystem; create an Activity B0_2
which uses the new release of the VT subsystem and Path VTtester
for Main.)

CMU/SEI-88-TR-21 15

{Make ! Users . experimenter. Cm_Experiment.
Vt.Revl_Working.Units the current context.
NOTE: Use all defaults in Cmvc. Release command.}
Cmvc. Release

{Make !Users . experimenter. Cm Experiment
the current context.}
Activity.Create(The_Activity => "B0_2",

Source => "B0_1") ;
{Make ! Users . experimenter. Cm_Experiment.
B0_2 the current context.}
<Object> I
Insert (Subsystem => "Main",

Spec_View => "",
Load_view => " Vttester_Working") ;

<Object> I
Insert (Subsystem => " Vt",

Spec_View => "",
Load_Viaw -> " Rev1_0_2") ;

<Enter>

{Make Activity B0_2 the default activity and execute the system.}

Set_Default(The_Activity => "B0_2");
{Make ! Users . experimenter. Cm_Experiment.
Main.Vttester_Working.Units the
current context and select Main'body.}
<Promot>
{Observe the creation of an output window;
"Elaborating Page_Terminal Body.",
"It works!" and "This is the VT Driver."
appear in the window.}

b. Test CLI interfaces

Build executable load module named CLIMAIN using MAIN.B as
the main program. Measure time taken for creating a variant line of
descent. Measure CM file size increase caused by variant. Measure
time taken to perform the build.

{Make Activity B0_1 the default activity, edit Main in Clitester
subpath.}

16 CMU/SEI-88-TR-21

Activity.Set_Default(The_Activity =>
" lUsers.experimenter. Cm_Experiment.

B0_1"

{Make ! Users . experimenter. Cm_Exper iment.
Main.Clitester_Working.Units.Main'body
the current context.}
<Check Out>
<Install Unit>
{Place cursor in body after
the Text_IO.Put_Line statement.}
<Object> I
{An edit window opens and the cursor
is placed in it automatically.
Insert the code line:}
Text_IO.Putline

("This is the CLI Driver.");}
<Promot>

ii. Fix bugs in MAIN.B. {Note that Putline is underlined as an error.}
{Correct Putline to be Put_Line; place the
new code line back into the program.}
<Promot>
{Return the entire unit to coded state.}
<Promot>
<Check In>

iii. Construct a configuration baseline named B0.3 of the current sys-
tem using MAIN.B as the main program. Record current size of CM
files. Measure time taken to perform baseline operation.

{Create Activity B0_3; make it the current activity; and link, load, and
execute system.}

CMU/SEI-88-TR-21 17

(Make ! Users . experimenter. Cm_Experiment
the current context.}
Activity.Create(The_Activity => "B0_3" ,

Source => "B0_1") ;
NOTE: The value for the parameter
Source must be in quotes.

{Make ! Users . experimenter. Cm_Experiment.
B0_3 the current context.}
<Object> I
Insert (Subsystem => "Main",

Spec_View => "",
Load_view => " Clitester_Working");

{Save the new entries.}
<Enter>

Set_Default(The_Activity => " B0_3");

{Make ! Users. experimenter. Cm_Exper i ment
.Main.Clitester_Horking.Units and select
Main'body.}
<Promot>
{Observe the creation of an output window.
"It works!" and "This is the CLI Driver."
appear in the window.}

c. Test SM interfaces.

i. Build executable load module named SMMAIN using MAIN.C as
the main program. Measure time taken to perform the build. Meas-
ure time taken for creating a variant line of descent. Measure CM
file size increase caused by variant.

{Make Activity B0_1 the default activity, edit Main in Smtester sub-
path, link, load and execute.}

18 CMU/SEI-88-TR-21

Activity.Set_Default(The_Activity =>
" lUsers.experimenter. Cm_Experiment.

B0_1"

{Make ! Users . experimenter. Cm_Experiment.
Main.Smte ster_Working.Units.Main'body
the current context.}
<lnstall Unit>
{Place cursor in body after
the Text_IO.Put_Line statement.}
<Object> I
{An edit window opens and the
cursor is placed in it automatically:
insert the code line:
Text_IO.Put_Line

("This is the SM Driver.");}
{Place the new code line back into
the program.}
<Promot>
{Return the entire unit to coded
state.}
<Promot>
<Check In>

{Make ! Users . experimenter. Cm_Experiment .
Main.Smtester_Working.Units the current
context and select Main'body.}
<Promot>
{Observe the creation of an output window.
"It works!" and "This is the SM Driver."
appear in the window.}

ii. Add new interface to Viewport_Manager package (using variant
versions). Measure time taken for creating a variant line of descent.
Measure CM file size increase caused by variant.

(Add function definition to Viewport_Manager specification, add
function to Viewport_Manager'body, make a new spec view of sub-
system SM, update subsystems which import subsystem SM.}

CMU/SEI-88-TR-21 19

{Make ! Users . experimenter. Cm_Experunent. Sm.
Revl_Working.Units.Viewport_Manager'spec
the current context.}
<Check Out>
{Place cursor after subtype V_String
definition.}
<Object> I
{An edit window opens; type in the
specification:
"function I_Do_Nothing return Boolean;"}
<Forxnat>
<Promot>
<Check In>

{Make ! Users . experimenter. Cm_Experiment. Sm.
Revl_Working.Units.Viewport_Manager'body
the current context.}
<Check Out>
<Edit>
{After "package body is" line, add:

function I_Do_Nothing return Boolean is
begin

return True;
end I_Do_Nothing; }

{Replace null statement in package body
with:

Text_Io.Put_Line("Elaborating
Viewport_Manager Body."); }

<Code Unit>
<Check In>

{Make I Users. experimenter. Cm_Exper iment. Sm.
Revl_Working the current context.}
Cmvc. Make_Spec_View(Spec_View_Prefix =>

"SM",
Level => 1) ;

{Due to bug in Cmvc.Make_Spec View
command, units in the new spec view
must be manually promoted to coded state;
make ! Users . experimenter. Cm_Experiment.
Sm.Sm_l_Spec the current context.}
<Code (This World)>

{Make ! Users . experimenter. Cm_Experiment.
Main.Smtester_Working the current
context.}
Cmvc. Import (View_To_Import => " lUsers.

experimenter.Cm_Experiment.Sm.Sm_ 1_Spec) ;
{Make ! Users . experimenter. Cm_Experiment.
Cli.Revl Working the current context.}
Cmvc. Import (View_To_Import => " lUsers.

experimenter.Cm_Experiment.Sm.Sm_ 1_Spec);

iii. Rebuild executable load module named SM MAIN with new version

20 CMU/SEI-88-TR-21

of the Viewport_Manager. Test new interface along with previous
interfaces of the SM. Measure time taken to perform the build.

{Construct an activity Aim_B04 which will test the new spec view
and driver for Sm.}

{Make ! Users . experimenter. Cm_Experi meat
the current context.}
Activity.Create(The_Activity => "Aim_B04" ,

Source => "B0_1") ;
NOTE: The value for the parameter
Source must be in quotes.
{Make ! Users. experimenter. Cm_Experiment.
Aim_B04 the current context}
<Object> I
Insert (Subsystem => "Main",

Spec_View => "",
Load_view => "Smtester_Working")-,

<Object> I
Insert (Subsystem => "Sm",

Spec_View => "Sm_1_Spec",
Load_View => "Rev1_Working");

{Save the new entries.}
<Enter>

Set_Default(The_Activity => "Aim_B04") ;
{Make ! Users. experimenter. Cm_Experiment.
Main.Smtester_Working.Units the current
context, and select Main'body.}
<Promot>
{Observe the creation of an output window;
"Elaborating Viewport_Manager body.",
"It works!" and "This is the SM Driver."
appear in the window.}

iv. Construct a configuration baseline named B0.4 of the current sys-
tem using MAIN.C as the main program and the new versions of the
Viewport Manager. Record current sizes of the CM files. Measure
time taken to perform baseline operation.

{Create a release of the SM subsystem; create an Activity B0_4
which uses the new release of the SM subsystem and Path
Smtester for Main.}

CMU/SEI-88-TR-21 21

{Make ! Users . experimenter. Cm_Experiment.
Sin. Rev l_Working. Units the current context.
NOTE: Use all defaults in CmvcRelease command.}
Curve. Release

{Make ! Users . experimenter. Cm_Experiment
the current context.}
Activity.Create(The_Activity => "B0_4",

Source => "Aim_B04") ;
NOTE: The value for the parameter Source must
be in quotes.
{Make ! Users . experimenter. Cm_Experiment.
B0_4 the current context}
<Object> I
Insert (Subsystem => "Sm",

Spec_View => "Sm_1_Spec",
Load_View => " Rev 1_ 1_1") ;

{Save the new entry.}
<Enter>

(Make Activity B0_4 the default activity and execute the system.}

Set_De£ault(The_Activity => "B0_4");
{Make ! Users . experimenter. Cm_Experiment.
Main. Smtester_Working. Units the
current context and select Main'body.}
<Promot>
{Observe the creation of an output window;
"Elaborating Viewport_Manager Body."
"It works!" and "This is the SM Driver."
appear in the window.}

8. Merge bug fixes and enhancements back into main line of descent for:

a. Main program

b. VT package body

c. VM package specification and body

Measure time to perform merge operations. Record CM file size increases caused
by merge operations.

{Use the Cmvc.Merge_Changes command to merge Main'body from
Vttester_Working, Clitester_Working, and Smtester_Working back into
Rev1_Working.}

22 CMU/SEI-88-TR-21

{Make ! Users . experimenter. Cm_Experiment.
Main.Revl_Working.Units the current context,
select Main'body.}
Cmvc.Merge_Changes(Destination_Object =>

"<SELECTION>",
Source_View => " lUsers.

experimenter. CmJExperiment.
Main. Vttester_ Working,

Report_File => "",
Fail_If_Conflicts_Found => False,
Comments => "",
Work_Order => "<DEFAULT>",
Response => "<PROFILE>");

{Check Main_Merging_Report to see if merge occurred
successfully.}

{Select Main'body}
Cmvc.Merge_Changes(Destination => "<SELECTIOK>",

Source_View => " lUsers.
experimenter. Cm_Experiment.
Main.Clitester_Working) ,•

{Check report to see where conflicts occurred;
select Main'body}
<Edit>
{Remove "*;1" and "*;2" from the beginning of
"conflicting" lines.}
<Next Item>
<Control> D
<Control> D
<Control> D
<Format>
<Control> D
<Control> D
<Control> D
<Code Unit>
<Check In>

{Select Main'body.}
Cmvc.Merge_Changes(Destination => "<SELECTION>",

Source_View => " lUsers.
experimenter.Cm_Experiment.Smtester_Working) ;

{Check report to see where conflicts occurred;
select Main'body.}
<Edit>
{Remove "*1;" and "*2;" from the beginning of
"conflicting" lines.}
<Code Unit>
<Check In>

{To "merge" the bug fixes and enhancements, the experimenter need only pick up
the latest release of subsystems VT and SM in the subsequent experiment step.}

9. Add prologues to package specifications and bodies. Measure time for single file
reserve and replace operations.

CMU/SEI-88-TR-21 23

{Make ! Users . experimenter. Cm_Experiment.
Vt.Revl_Working.Units current context and
place cursor on Vt_Support'spec.}
<Mark> <Begin 0£>
<Definition>
<Check Out>
{Place cursor at beginning of file.}
<Image> <Begin Of>
<Object> I
{An Edit window opens, enter the prologue:}

— This is a sample Ada program prologue:

Author:
Unit Name:

Creation Date:
Update History:

<Promot>
<Check In>
<Mark> <End Of>

{To repeat the above prologue insertion
procedure for each of the package
specifications and bodies in the
Revl_Working views of all the subsystems,
the <Mark> <Begin Of> and
<Mark> <End Of> commands above
have created a macro, which now may
be bound to a key.}

Editor.Macro.Bind(Key => "F1");

{Now place the cursor on any
package specification or body while
in its enclosing context, and the
commands to insert the
prologue template above will be
repeated with the press of key
<F1>.}

10. Construct a configuration baseline named V1.0 of the current system. Record cur-
rent sizes of CM files. Measure time taken to perform baseline operation.

{Release all the subsystems, create Activity V1_0, and make Activity V1_0 the de-
fault activity.}

24 CMU/SEI-88-TR-21

{Make ! Users . experimenter. Cm_Experiment the current
context.}
Cmvc.Release(From_Working_View =>

lUsers. experimenter.
Cm_Experiment.[Vt,Sm,Cli,As,Main].
Rev1_Working);

Activity.Create(The_Activity => " V1_0",
Source => "B0_1") ;

NOTE: The value for the parameter Source must
be in quotes.

{Make ! Users . experimenter. Cm_Experiment. V1_0
the current context and insert entries with
the following commands:}
<Object> I
Insert (Subsystem => "Main",

Spec_View => "",
Load_View => "Rev1_0_2") ;

<Object> I
Insert (Subsystem => "Sm",

Spec_view => "Sm_1_Spec",
Load_View => "Rev1_1_2") ;

<Object> I
Insert (Subsystem => " Cli" ,

Spec_View => "",
Load_View => "Rev1_0_2") ;

<Object> I
Insert (Subsystem => " Vt',

Spec_View => "",
Load_View => "Rev1_0_3") ;

<Object> I
Insert(Subsystem => "As",

Spec_View => •",
Load_View => "Rev1_0_2") ;

{Save the entries:}
<Enter>

Set_Default (The_Activity => "V1_0");

11. Build executable load module name Product using all current source code.

{In order to create a code view of the subsystems which can be executed, a spec
view for subsystem Main must be created.}

{Make ! Users . experimenter. Cm_Experiment.
Main.Revl_0_2 the current context.}
Cmvc.Make_Spec_View(Spec_View_Prefix =>

"Main",
Level => 7) ;

{Due to a bug in the Cmvc.Make_Spec_View
command, units in the new spec view
must be manually promoted to coded state,
make ! Users . experimenter. Cm_Experiment.
Main.Main_0_Spec the current, context.}
<Code (This World)>

CMU/SEI-88-TR-21 25

{Create a code view of each of the subsystems and an Activity which references
them.}

{Make ! Users . experimenter. Cm_Experiment.
the current context.}
Cmvc.Make_Code_View(

From_View => " $.[Main.Rev1_0_2,
Sm.Rev1_1_2,
Cli.Rev1_0_2,
Vt.Rev1_0_3,
As.Rev1_0_2]",

Code_View_Name => "Product",
Comments => "",
Work_Order => "<DEFAULT>",
Volume => 0,
Response => "<PROFILE>");

{Create an Activity named Product,
Make ! Users . experimenter. CmJExperi meat
the current context.}
Activity.Create (The_Activity => "Product",

Source => "V1_0") ;
NOTE: The value for the parameter Source must
be in quotes.

{Make ! Users . experimenter. Cm_Experiment.
Product the current context.}
<Object> I
Insert (Subsystem => "Main",

Spec_view => " Main_0_Spec",
Load_view => " Product");

<Object> I
Insert (Subsystem => "Sm",

Spec_View => "",
Load_View => " Product");

<Object> I
Insert (Subsystem => " Cli",

Spec_View => "",
Load_view => " Product") ;

<Object> I
Insert (Subsystem => " Vt",

Spec_View => "",
Load_View => " Product") ;

<Object> I
Insert(Subsystem => "As",

Spec_View => "",
Load_view => " Product") ;

{Save the entries:}
<Enter>

Set_De£ault (The_Activity => "Product");

26 CMU/SEI-88-TR-21

{Make ! Users . experimenter. Cm_Experiment.
Main.Main_0_Spec.Units the current context;
select Main'Spec}
<Proxnot>
{Observe the creation of an output window;
"Elaborating Viewport_Manager Body.
Elaborating Page_Terminal Body.
It Works!
This is the SM Driver.
This is the CLI Driver.
This is the VT Driver."
appears in the window.}

2.3. Experiment #1 Functionality Checklist

Primary Activities
Activity Step #

Version Control
Create element 6

Create new version
Successive 9

Parallel 7

Retrieve specific version
Explicit 7
Dynamic 7,9

Configuration Control
Define system model
Specify source dependencies 5,7,11
Specify translation rules 5,7,11
Specify translation options 5,7,11
Specify translation tools 5,7,11

Build system
Current default 5,7,11

Supported
(Y/N)

Yes

Observations

Must create the Ada object in the Units
directory of the subsystem and place
under control using the
Cmvc.Make Controlled command.

Yes Conventional checkin/checkout
paradigm.

Yes Branch creation supported via the
Make Path and Make SubPath
commands with Join_Paths parameter
set to False.

Yes Use the Cmvc.Revert command.
Yes Defaults to most recent revision.

Yes Maintained by library and imports.
N/A
Yes Set Model for subsystem.
N/A

Yes Using Compilation. Promote and
enumerate subsystems comprising the
system.

Product Release
Baseline system 6,7,10

Create system release class 11

Yes Use Cmvc.Release on each subsystem
and define an Activity for the Baseline.

Yes Create coded views of all
subsystems.

CMU/SEI-88-TR-21 27

Secondary Activities

Activity Step # Supported Observations
Version Control
Merge variants 8 Yes Merge Ada objects which have a

common ancestor.

2.4. Experiment #2

1. Experiment setup

a. Establish environment variables to be used in the experiment.

{None are used; the logical names assumed by the experiment are used as
subsystem names.}

b. Change working directory to the system integration directory created in
Experiment #1.

{Make 'Users . experimenter. Cm_Experi-ment the
current context.}

c. Create a new program library named bulidjib underneath the
sys_integration directory.

{New libraries, or working views of the subsystems, will be created as
needed later.}

d. Confirm that no files are currently reserved:
Cmvc. Show__CheckedL_Out_In_View (In_View =>

" $.[Main, Vt.Sm, Cli,As].Rev1_ Working",
Response —>

"<PROFILE>") ;

Cmvc.Show_Checked_Out_In_View(In_View =>
" $. Main.[Vttester_working, Clitester_working,
Smtester_working]") -,

e. Remove any pre-existing copies of files used throughout the experiment.

{Remove all working and release views, but allow configuration objects to
remain.}

28 CMU/SEI-88-TR-21

{Make ! Users. experimenter. Cm_Eaeperiment
the current context.}
Cmvc.Destroy_View(
What_View =>

"$.As.[Rev1_0_1,
Rev1_0_2,
Rev1_Working]",

Demote_Clients => raise,
Destroy_Configuration_Also => False,
Comments => "",
Work_Order => "<DErAULT>",
Response => "<PROFILE>");

Cmvc.Destroy_View(
What_View =>

"$.CIi.[Rev1_0_1,
Rev1_0_2,
Rev1_Working]");

Cmvc.Destroy_View(
What_VieK =>

" $. Main.[Clitester_ Working,
Rev1_0_1,
Rev1_0_2,
Rev1_Working,
Smtester_ Working,
Vttester_Working]");

Cmvc.Destroy_View(
What_View =>

"$.Sm.[Rev1_0_1,
Rev1_1_1,
Rev1_1_2,
Rev1_Working]") ;

Cmvc.Destroy_View(
What_View »>

"$.Vt.[Rev1_0_1,
Rev1_0_2,
Rev1_0_3,
Rev1_WorkingJ");

2. Display configuration management historical information pertaining to the current
state of the system. Measure time taken to display history infonvation.

Cmvc.Show_History_By_Generation(
For_Objects =>

" $.[Main, Vt,Sm,CH,As].Product",
Display_Change_Regions => True,
Starting_Generation => 1,
Ending_Generation => Natural'Last,
Response => "<PROriLE>");

3. Fetch all the Ada source code files belonging to the B0.4 baseline and build an
executable load module named Verslon0.4. Measure time taken to fetch the source
files in the B0.4 baseline. Measure time taken to perform the build.

{Display Activity B0_4, note the version numbers of the spec views and load views
in Activity B0_4. Invoke the Cmvc.Build command to reconstruct all the load
views. Create working views. Create Aim_V1_2 to refer to the new working views.
Set default Activity to Aim_V1_2. Execute main program.}

CMU/SEI-88-TR-21 29

{Make 'Users . experimenter. Cm_Exper±ment. B0_4 the
current context, note:

Subsystem Spec View Load View

As As_0_Spec Revl 0 1
Cli Cli 0 Spec Revl 0 1
Main Smtester Working
Sm Sm_l_Spec Revl 1 1
Vt Vt_0_Spec Revl_0_l }

{Make ! Users . experimenter. Cm_Experiment the
current context.}
Cmvc.Build(Configuration =>

" $.[As. Configurations.Rev1_0_1,
Cli. Configurations. Rev1_0_1,
Main. Configurations. Smtester_ Working,
Sm. Configurations. Rev 1_1_1,
Vt.Configurations.Rev1_0_ 1]",
View_To_Import => "",
Model => "R1000_Portable",
Goal => " Compilation. Coded",
Limit => "<WORLDS>",
Comments => "",
Work_Order => "<DErAULTS>",
Volume => 0,
Response => "<PROFILE>");

{Due to a bug in the creation of configuration-only mode and the Build command,
the imports between the spec views and load views are lost; when the Build com-
mand attempts to recompile the system to coded state, the build fails. This leaves
the frozen releases in an unfrozen state. Also, the State.Release_History text file is
lost from each view, and must be replaced by a dummy blank file.}

30 CMU/SEI-88-TR-21

{Replace Release_History files.
Make !Users . experimenter. Cm_Experiment.
As.Revl_0_l.State the current context.}
<Create Text>
Text .Create (Image_Name => "Release_History" ,

Kind => Text.File);
<Promot>
{A text editor window opens on text file
Release_History.}
<Enter>

{Repeat the above steps in contexts
! Users . experimenter. Cm_Experiment. Cli .
Revl_0_l.State,
!Users . experimenter. Cm_Experiment .Main.
Smtester_Working.State,
! Users . experimenter. Cm_Experiment. Sm.
Revl_l_l.State, and
! Users. experimenter. Cm_Experiment. Vt.
Revl_0_l.State to create a blank
Release_History text file in each.}

{Create a working view for each subsystem; make
! Users. experimenter. Cm_Experiment the
current context.}
Cmvc.Make_Path(From_Path => "Users.experimenter.

Cm_Experiment.As.Rev1_0_1",
New_Path_Name => "Rev2" ,
Join_Paths => "False");

Cmvc.Make_Path(rrom_Path => "Users.experimenter.
Cm_Experiment. Cli.Rev1_0_ 1",

New_Path_Name => "Rev2",
Join_Paths => " False") ;

Cmvc.Make_Path(rrom_Path => "Users.experimenter.
Cm_Experiment. Main. Smtester_ Working",

New_Path_Name => " Rev2" ,
Join_Paths => " False") ;

Cmvc.Make_Path(From_Path => "Users.experimenter.
Cm_Experiment.Sm.Rev1_ 1_1",

New_Path_Name => "Rev2",
Join_Paths => " False") ;

Cmvc.Make_Path(From_Path => "Users.experimenter.
Cm_Experiment. Vt.Rev1_0_1",

New_Path_Mame => " Rev2" ,
Join Paths => "False");

CMU/SEI-88-TR-21 31

{Due to problems with the Build command, run
Cmvc_Maintenance.Check_Consistency on the
working views . Let ! Users. experimenter.
Cm_Experiment remain the current context. }
Cmvc_Maintenance.Check_Consistency(Views =>

" $.[As. Rev2_ Working, Cli. Rev2_ Working,
Main. Rev2_ Working, Sm. Rev2_ Working,
Vt. Rev2_ Working]",
Response => "<PROFILE>");

{Due to problems with the Build command, must
redefine the imports required to compile the
system.}
{Make Wsera .experimenter.Cm Experiment .Main.
Rev2_Working the current context.}
Cmvc. Import (View_To_Import =>

! Users, experimenter. Cm_ Experiment.
[Sm.Sm_1_Spec, Vt.Vt_0_Spec,
Cli_0_Spec]);

{Make > Users . experimenter. Cm_Experiment. Cli.
Rev2_Working the current context)
Cmvc.Import(View_To_Import =>

lilsers. experimenter. Cm_Experiment.
[Sm.Sm_1_Spec, Vt.Vt_0_Spec, "
As.As_0_SpecJ);

{Make ! Users . experimenter. Cm_Experiment. Sm.
Rev2_Working the current context)
Cmvc.Import(View_To_Import =>

/Users, experimenter. Cm_ Experiment.
[Vt Vt_0_Spec, As.As_0_Spec]) ;

{Create an Activity to refer to the new
working views, make 'Users . experimenter.
Cm_Experiment the current context)
Activity.Create(The_Activity => "AIM_V1_2",

Source => "B0_4")

32 CMU/SEI-88-TR-21

{Make ! Users . experimenter. Cm_Experiment. Aim_Vl_2
the current context.}
<Object> I
Insert (Subsystem => "Main",

Load_View => "Rev2_Working");
<Object> I
Insert(Subsystem => "Sm",

Load_View => "Rev2_Working");
<Object> I
Insert (Subsystem => "Cli",

Load_View => "Rev2_Working") ;
<Object> I
Insert (Subsystem => " Vt",

Load_View => "Rev2_Working");
<Object> I
Insert(Subsystem => "As",

Load_View => "Rev2_Working");

(Save the entries for the new Activity:}
<Enter>

Set_Def ault (The_Activity => " Aim_ V1_2")

(Rebuild the system, make
! Users . experimenter. Cm_Experiment
the current context.}
Compilation.Promote(
Unit *> "$.[As, Cli, Main, Sm, Vt].

Rev2_ Working",
Goal => Compilation. Coded,
Limit => <ALL_WORLDS>) ;

{Link and load the system by executing it; make
! Users. experimenter. Cm_Experiment. Main.
Rev2_Working.Units the current context, and
select Main'body.}
<Promot>

{Observe the creation of an output window,
and "Elaborating Viewport_Manager Body.",
"It works!", and "This is the SM Driver."
appear in the window.}

4. Move the StrJJtilities package specification and body of the current system (V1.0)
into the local copies of the AIM_SUPPORT package specification and body.
Recompile compilation units as necessary.

{Checking Activity V1_0 shows that release Rev1_0_2 of subsystem AS would
have the StrJJtilities package specification and body; rebuild subsystem
As.Rev1_0_2.}

{Make ! Users . experimenter. Cm_Experiment.
As the current context.}
Cmvc. Build (Configuration => " Configurations. Rev1_0_2",

Model => "R1000_Portable") ;

{Edit the Aim_Support package specification to contain the definitions in the

CMU/SEI-88-TR-21 33

StrJJtilities package specification. Create Aim_Support package body to contain
the function defined in StrJJtilities. Make Aim_Support package body controlled,
create a new spec view for subsystem As. Change uses of package Str_Utilities to
Aim_Support in subsystems Cli and Sm. Generate new spec view for Sm.}

{Make ! Users . experimenter. Cm_Experiment.
As.Revl_0_2.Units.Str_Utilities'Spec the current
context.}
<Window> <Promot>
{Make ! Users . experimenter. Cm_Experiment.
As.Rev2_Working.Units.Aim_Support'Spec the current
context.}
<Check Out>
<lnstall Unit>
{Place cursor after subtype Aim_Name definition.}
<Object I>
{Place cursor back in Str_Utilities'Spec window,
with cursor before type Str_Access definition.}
<Region> [
{Place cursor after function Get_String definition.}
<Region>]
{Note that the two lines become highlighted,
and move cursor back to Aim_Support'Spec window.}
<Region> C
<I"ormat>
<Promot>
<Check In>

{Make ! Users . experimenter. Cm_Experiment.
As.Revl_0_2.Units.Str_Utilities'Spec the current
context.}
<Window> <Demote>

{Make ! Users . experimenter. Cm_Experiment.
As.Revl_0_2.Units.Str_Utilities'Body the current
context.}
<Window> <Promot>
{Place cursor before function 6et_String definition.}
<Region> [
{Place cursor after "end Get_String;" statement.}
<Region>]

{Make ! Users . experimenter. Cm_Experiment.
As.Rev2_Working.Units the current context.}
<Create Ada>
{Enter:
"package body Aitn_Support is".}
<Format>
{Place cursor after package body declaration in
! Users . experimenter. Cm_Experiment. As .
Rev2_Working.Units.Aim_Support'body.}
<Region> C
<Format>
<Code Unit>

34 CMU/SEI-88-TR-21

{Make ! Users . experimenter. Cm_Experiment.
As . Revl_0_2.Units.Str_Utilities'Body the current
context.}
<Window> <Demote>

{Since Aim_Support'Body was added to subsystem As, it must be controlled. The
configuration management system up to this point has assumed the existence of a
null Aim_Support'Body. An attempt to use Cmvc.Make_Controlled to put the new
actual Aim_Support'Body under version control results in error messages and com-
mand failure. The workaround for this bug is to use the Cmvc_Maintenance com-
mand Check_Consistency and then make Aim_Support'Body controlled.}

{Make ! Users . experimenter. Cm_Experiment.
As, place cursor on Rev2_Working.}
Cmvc_Maintenance. Check_Consistency (

Views => "<CURSOR>",
Response => "<PROFILE>");

(Note: use default values.)

{Make ! Users . experimenter. Cm_Experiment.
As.Rev2_Working.Units the current context.}
Cmvc.Make_Controlled(What_Objact =>

" Aim_Support'body");

{Make ! Users . experimenter. Cm_Experiment.
Cli.Rev2_Working.Units.
Command_Interpreter'Body the current
context.}
<Check Out>
{Select "with Str_Utilities" statement.}
<Edit>
{In edit window change "with Str_Utilities"
to "with Aim_Support".}
<Fonnat>
<Promot>
<Check In>

{Make ! Users . experimenter. Cm_Experiment.
Sm.Rev2_Working.Units. Image_Manager'Spec
the current context.}
<Check Out>
{Select "with" clause.}
<Edit>
{Delete "with Str_Utilities".}
<Format>
<Promot>
<Check In>

Cmvc.Make_Spec_View(
Spec_View_Pre£ix => "Sm2"r

Level => 0);

5. Fetch the current version (from baseline V1.0) of the
COMMANDJNTERPRETER.PERFORM_COMMAND subprogram. Measure time
taken to perform fetch operation.

{Checking Activity V1_0 shows that release Rev1_0_2 of subsystem CLI would

CMU/SEI-88-TR-21 35

have the subprogram Command_lnterpreter.Perform_Command; rebuild subsys-
tem Cli.Rev1_0_2.}

{Make ! Users . experimenter. Cm_Experiinent.
Cli the current context.}
Cnnrc. Build (Configuration => " Configurations.Rev1_0_2",

Model => "R1000_Portable");

{Copy Command_lnterpreter.Perform_Command from the V1_0 release version of
subsystem CLI to the Rev2_Working.Units version.}

{Make ! Users . experimenter. Cm_Experiment.
Cli.Rev2_Working.Units.Command_Interpreter.
Perform_Command the current context.}
<Check Out>
Library. Copy (From => " lUsers.experimenter.

Cm_Experiment. Cli. Rev 1_0_2. Units.
Command_lnterpreter.Perform_Command",

To => " /Users, experimenter.
Cm_Experiment. Cli. Rev2_ Working. Units.
Command_lnterpreter.Perform_Command")

<Code Unit>
<Check ln>

6. Generate an executable load module named Product using the Ada source files
presently in the experiment's source code directory; perform this system build using
the pragma SUPPRESS to disable the following checks during the translation
phase:

• access_check

• discriminant_check

•index_check

• length_check

• division_check

• overflow_check

• elaboration_check

Measure time taken to perform the build.

{Pragma SUPPRESS is not supported.}

7. Remove the configuration management file elements associated with the specifi-
cation and body of the STR_UTILITIES package. Measure time taken to perform
remove operation.

{Make uncontrolled and remove StrJJtilities specification and body. Create new
spec views for the subsystem As and Sm.}

36 CMU/SEI-88-TR-21

{Make ! Users . experimenter. Cm_Experiment. As .
Rev2_Working.Units the current context.}
Cmvc.Make_Uncontrolled(What_Object => "Str_Utilities'Spec" ,

Comments => "", Work_Order => "<DEFAULT>",
Response => "<PROFILE>");
{Select Str_Utilities'Body.}

Cmvc.Make_Uncontrolled(What_Object => "<CURSOR>");
{Now delete the body and specification;
select Str_Utilities'Body.}
<Object> d
{Select Str_Utilities'Spec}
<Object> d "

{Allow cursor to remain in context !Users.
experimenter. Cm_Experiment .As . Rev2_Working. Units . }
Cmvc.Make_Spec_View(Spec_View_Prefix => "As",

Level => 1);

{Make ! Users . experimenter. Cm_Experiment. Sm. Rev2_Working
the current context.}
Cmvc.Make_Spec_View(Spec_View_Prefix => "Sm2");

{Due to a bug in the Make_Spec_View command, the specification units copied to
the spec view are not automatically promoted to the state indicated by the Goal
parameter. Visit the spec view and promote the units to coded state.}

{Make ! Users . experimenter. Cm_Experiment. As . As_l_Spec.
Units the current context.}
<Code (This World)>
{Make ! Users . experimenter. Cm_Experiment. Sm. Sm2_0_Spec.
Units the current context.}
<Code (This World)>

{Update all the references of the spec view of subsystem As and Sm.}

Cawc. import (View_To_import => " lUsers.experimenter.
Cm_Experiment.As.As_ 1_Spec",

into_view => "lUsers.experimenter.
Cm_Experiment.[
Cli.[Cli_0_Spec, Rev2_Working],
Sm.[Sm2_0_Spec, Rev2_Working],
Main.[Main_0_Spec, Rev2_Working]]" •,

Cmvc.import (view_to_import => "lUsers.experimenter.
Cm_Experiment.Sm.Sm2_0_Spec",

into_view => "lUsers.experimenter.
Cm_Experiment.[Main, Cli].Rev2_Working") ;

8. Add prologues to all Ada source code contained in the experiment's code directory.

CMU/SEI-88-TR-21 37

{Make ! Users. experimenter. Cm_Experiment. Vt.
Rev2_Working.Units the current context and
place cursor on Vt_Support.}
<Mark> <Begin Of> "
<De finition>
<Check Out>
<Begin Of>
<Object> I
{Enter the following in the edit window:

— This is a sample Ada program prologue:

Author:
Unit Name:

Creation Date:
Update History:

>
<Proxnot>
<Check ln>
<Mark> <End Of>

{Repeat the above for all Ada Units in the Rev2_Working.Units areas of subsys-
tems Vt, As, Cli, Sm and Main except for
CommandJnterpreter.Perform_Command, which will already have a prologue.}

{To repeat the above prologue insertion procedure,
the <Mark> <Begin Of> and <Mark> <End Of> commands
above have created a macro, which now may be bound
to a key.}

Editor.Macro.Bind(Key => "F1");

{Now place the cursor on any package specification
or body while in its enclosing context, and the
commands to insert the prologue template above
will be repeated when the key is pressed.
<F1>.}

9. Construct a configuration baseline named V1.2 of the current system. In making
this baseline, each source code file in the experiment's code directory should be
compared against the latest version already baselined in version V1.0; only if the
local copy is different (i.e., more up to date) than the already existing CM element
shall it be placed into this new system baseline. Measure time taken to perform the
compare operations. Measure time taken to perform baseline operation.

{Release all of the subsystems, create Activity V1_2, and create a linked module
Product_V1_2.}

38 CMU/SEI-88-TR-21

Cmvc. Release (From_WorJcing_View =>
"$.[Main, Sm, Cli, As, VtJ.rev2_working") ;

Activity.Create(The_Activity => " V1_2" ,
Source => "Aim_V1_2") ;

{Make ! Users . experimenter. Cm_Experiment. Vl_2
the current context.}
<Object> I
Insert (Subsystem => "Main",

Spec_View => "Main_0_Spec",
Load_View => " Rev2_0_ 1") ;

<Object> I
Insert (Subsystem => "Sm",

Spec_View => " Sm2_0_Spec" ,
Load_View => " Rev2_0_ 1") ;

<Object> I
Insert (Subsystem => "Cli",

Spec_View => " Cli_0_Spec",
Load_View => " Rev2_0_ 1") ;

<Object> I
Insert (Subsystem => " Vt" ,

Spec_View => "Vt_0_Spec",
Load_View => " Rev2_0_ 1") ;

<Object> I
Insert(Subsystem => "As",

Spec_View => "As_1_Spec",
Load_View => "Rev2_1_1") ;

{Save the changes:}
<Enter>

Set_Default (The_Activity => "V1_2") ;

CMU/SEI-88-TR-21 39

{Make ! Users . experimenter. Cm_Experiment
the current context.}
Cmvc .Make_Code_View (

rrom_View =>
" $.[Main.Rev2_0_1, Sm.Rev2_0_1,
Cli.Rev2_0_1, Vt.Rev2_0_1,
As.Rev2_1_1]",

Code_View_Name => "Product_V1_2") ;

Activity.Create(The_Activity => "Product_Vl_2",
Source => "Aim_Vl_2") ;

{Make ! Users . experimenter. Cm_Experiment.
Product_Vl_2 the current context.}
<Object> I
Insert (Subsystem => "Main",

Load_View => "Product_V1_2") ;
<Object> I
Insert (Subsystem => "Sm",

Load_View => "Product_V1_2") ;
<Object> I
Insert (Subsystem => "Cli",

Load_View => "Product_V1_2") ;
<Object> I
Insert (Subsystem => "Vt",

Load_View => "Produd_V1_2") ;
<Object> I
Insert(Subsystem => "As",

Load_View => "ProdUCt_V1_2") ;

{Save the entries:}
<Enter>

{Set the default Activity to the new
product.}
Set_Default(The_Activity *>

"Product_V1_2") ;

{Make ! Users . experimenter. Cm_Experiment.
Main.Main 0 Spec the current context, and
select Main'Spec.}
<Promot>
{Observe the creation of an output window;
"Elaborating Viewport_Manager Body",
"It Works!" and "This is the SM Driver."
appear in the window.}

40 CMU/SEI-88-TR-21

2.5. Experiment #2 Functionality Checklist

Primary Activities
Activity Step # Supported Observations

(Y/N)
Version Control
Delete element 7 Yes Use the Cmvc.Make_Uncontrolled

command.

Create new version
Derived 6 Yes Create Path, with a different Model.

Retrieve specific version
Referential 5 Yes Use the Cmvc.Revert command either

with the version number or a
negative number to indicate the
number of previous versions.

Compare different file versions 3 Yes Cmvc.Show_History_Bv_Gisfwations
displays the change regions between
generations.

Configuration Control
Build system

Earlier release 3 Yes Either make the appropriate views the
current context, or if they were
destroyed, reconstruct using the
Cmvc.Build command.

Hybrid 6 Yes Use the Cmvc.Accept_Changes
command to collect the
latest objects among
joined working views.

Secondary Activities
Activity Step* Supported Observations

(Y/N)
Version Control
Display history attributes 1 Yes

Product Release
Display members of a released system 1 Yes Display the Activity associated

with the release.

Display system release history 1 Yes Cmvc.Show_History_By_Generations
for each of the subsystems in the
system.

CMU/SEI-88-TR-21 41

2.6. Experiment #1 Answers

CM1.1 Describe the mechanics of constructing a software system. Are auto-
mated construction techniques supported (built-in, Makefile, command
procedures)?

First, the system should be partitioned into subsystems. Rational recom-
mends that modules be placed in subsystems such that there is a minimum
of dependencies crossing subsystem boundaries. The Cmvc.Initial command
sets up the structure for a subsystem. Then Ada units may be copied into or
created in the Units subdirectory of the first working view. The
Cmvc.Make_Spec_View command is then used to create a view which
represents the contents of a subsystem which may be used by other subsys-
tems. Once spec views have been created for all the subsystems,
Cmvc. Import must be used to allow an Ada unit in a working view to use an
Ada unit in another spec view. Once all dependencies between subsystems
have been established using the Cmvc.Import command, an Activity should
be created. The Activity is a list of subsystems with their corresponding spec
view version and load (or working) view version.

Rational recommends that Ada units, whether spec views or load views, be
compiled as soon as possible, in a compile-as-you-go fashion. However,
complete system rebuilds may be accomplished in two different ways. Either
a Compilation.Promote command listing all the subsystems involved may be
issued, or a Compilation.Promote command specifying a main driver module
which uses all the modules in all the subsystems may be issued.

The first method was found to be more successful for the instantiation of
Configuration Management Experiments #1 and #2. The second method
would recompile only the minimum necessary for closure. When parameters
were set to compile load views, Ada subunits did not get compiled. When
parameters were set to compile "subunits too," only the specifications in the
spec views were compiled (and not the contents of the load views).

CM1.2 Elapsed time for performing a system build operation?

Forcing a complete system build, by specifying all subsystems to be compiled
in the Compilation. Promote command, required 43.50 seconds to compile
Rational source code (already formatted) to Rational code in coded state.

Creating coded views (no Diana tree, just machine code) of the five subsys-
tems from the subsystems all in coded state required 85.64 seconds.

CM1.3 Describe the mechanics of creating a CM element.

A subsystem must be created with the Cmvc. Initial command. An Ada unit
must be placed or created in the Units subdirectory. Cmvc.Make_Controlled
places the Ada unit under configuration management.

CM1.4 Describe the mechanics of constructing a configuration baseline.

For this experiment, a configuration baseline was created by releasing each
of the subsystems with the Cmvc. Release command. This creates a frozen
copy of the subsystem, which in turn can be used to generate working views
if modifications must be done to the baseline.

The Rational model leaves considerable latitude, and other methods for
baselining could be implemented.

42 CMU/SEI-88-TR-21

>p—r~

CM1.5 What kind of baselining mechanism is employed?

For this experiment, baselines were created by creating releases of subsys-
tems. The command to release a subsystem from working view copies por-
tions of the working view's directory structure and its Units subdirectory, and
places them under a "frozen" status. A release may be created in
configuration-only mode, which causes a copy of only the configuration data-
base. The Ada units can then be reconstructed using the Cmvc.Build com-
mand. Configuration-only mode can be used in order to save some space.

Subsequently, working views can be created from the released subsystems,
if work must progress from an "old" baseline.

CM 1.6 How are baselines/releases tagged (numeric, alpha, alpha-numeric)?

A release of a working view of a subsystem can either be named by the user
or "auto-generated." The auto-generated name consists of the portion of the
view name up to "_Working" followed by "_n_m", where n and m represent
automatically incremented level numbers. The user can control how n and m
are incremented via the level parameter, or through the model world specified
when the subsystem was created.

If a code view of a subsystem is made, its name is entirely determined by the
user. Policy can be established to logically name code views of subsystems.

In this experiment, Activities were used to specify which versions of the sub-
systems formed a system baseline or release. Activities can be given a
name of any form. Policy can be established to logically name the Activities.

CM1.7 Elapsed time for creating a CM file element?

Elapsed time for placing a file under configuration control (using
<Cmvc.Make_Controlled>: average time: 2.13 seconds. The average file
size for the files in Rational Source Code state: 3072 bytes (characters).

CM1.8 Elapsed time for performing baseline operation?

• Initial baseline for all subsystems -175.85 sec.

• B02, only VT had to be released - 41.15 sec.

• B03, no release needed - N/A.

• B04, only SM had to be released - 38.13 sec.

• V1.0, all subsystems released - 201.51 sec.

• V1.0, all subsystems configuration-only mode: - 42.86 sec.

CM1.9 File size increase caused by baseline Inclusion?

Releasing one subsystem, SM, caused an increased disk usage of 100,460
bytes. Releasing all 5 subsystems caused an increased disk usage of
483,609 bytes. Releasing all 5 subsystems in configuration-only mode
caused an increased disk usage of only 51,853 bytes.

CM1.10 How easy/difficult Is It to create a CM element?

Very easy: use Cmvc. Initial to create the subsystem and
Cmvc.Make_Controlled to put the Ada unit under version control in the
Rev1_Working view Units subdirectory.

CM1.11 How easy/difficult is it to create a baseline configuration? In this exper-
iment, using the Delta 0 release of the Rational Environment, creating a
baseline by releasing all the subsystems was easy using the Cmvc.Release

CMU/SEI-88-TR-21 43

command. However, editing an Activity to indicate the versions of the sub-
systems which form a system release was tedious.

CM 1.12 Are original files removed when a CM file is created?

No, the "file" or Ada unit actually becomes the controlled element.

CM1.13 Where are the CM files stored? (separate directory, maintained locally)

A copy of the Ada unit under configuration control may be kept locally. A
copy of the original unit is maintained in the configuration database in the
subsystem's State subdirectory in Cmvc_Database. When a user edits the
Ada unit, it must be checked out before it is changed. When the user checks
the unit back in, the deltas are stored in the Cmvc_Database.

CM 1.14 How are the CM files stored? (text, binary)

An Ada unit stored in a working view or Released View is stored as a
decorated binary tree. The Cmvc_Database maintains a copy plus the deltas
between checked in versions in an unreadable binary format.

CM1.15 Are the CM files delete protected?

The Ada units stored in a working view under configuration control are
protected from deletion. An attempt to delete an Ada unit under configuration
control raises a "Policy Error." An Ada unit must be removed from configu-
ration control in a working view (Cmvc.Make_Uncontrolled) before it can be
deleted.

The Cmvc_Database stored in the State subdirectory of a subsystem is NOT
protected from deletion.

CM1.16 Describe the mechanics of fetching a CM element
If a view of a subsystem has been stored in configuration-only mode, the
view may be reconstructed by invoking the Cmvc. Build
command with the Configuration parameter set to the
"subsystem_name.configurations.view_name." Due to bugs, a dummy blank
text file named ReleaseJ-iistory will have to be created in the subsystem's
State subdirectory. Cmvc_Maintenance.Check_Consistency should be run
on the rebuild subsystem also. CM elements in the view's Units directory
may then be "checked out" as described below.

If a view of a subsystem has not been reduced to configuration-only mode,
then to edit a CM element, make the CM element or Ada unit the current
context, and press one key—the <Check Out> key. Also, the
Cmvc.Check_Out command can be invoked from a command window:

<Create Command>
Cmvc.Check_Out
{Supply name of Ada Unit
as value for parameter
What_Object.}
<Promot>

CM1.17 Describe the mechanics of creating a variant of a CM element.

A variant version of a CM element is created by making a path or subpath of
its subsystem. The Cmvc.Make_Path command, with the JoinPaths
parameter set to false, will allow the creation of a separate version of the CM
element, which may be accessed simultaneously with the version in the orig-
inal view. If the Join_Paths parameter remains as the default value of true,
changes on the variant version must occur either before or after changes
made to the original version.

44 CMU/SEI-88-TR-21

•

CM 1.18 Describe the mechanics of fetching a variant of a CM element.

Either connect to the view or path of the variant version and access the unit
as it resides in the Units directory or use the Cmcv.Revert command with the
desired generation indicated by the To_Generation parameter.

CM1.19 Describe the mechanics of reserving a variant of a CM element.

Make the CM element or Ada unit the current context and press one key—the
<Check Out> key. Also, the Cmvc.Check_Out command can be invoked
from a command window:

<Create Command>
Cmvc. Check_Out
{Supply name of Ada unit
as value for parameter
What_Object.)
<Promot>

CM 1 20 Describe the mechanics of replacing a variant of a CM element.

With the CM element or Ada unit that is to be replaced as the current context,
press the <Check ln> key. Also, the Cmvc.CheckJn command can be in-
voked from a command window:

<Create Command>
Cmvc.Check_In
{Supply name of Ada unit
as value for parameter
What_Object.}
<Promot>

CM1.21 How are CM file versions maintained? (copy, deltas, data compression)

When the Cmvc.Make_Controlled command is first executed, a copy of the
Ada unit is placed in the Cmvc_Database in the State subdirectory of the
subsystem. With each "check out" and "check in," deltas are stored in the
Cmvc_Database.

CM 1.22 Elapsed time for fetching a CM element.

Elapsed time for fetch operation (Check Out command): 1.37 seconds.

CM1.23 Elapsed time for creating a variant of a CM element.
Elapsed time to create a subpath with Join_Paths parameter set to false:

• Vttester - 22.92 seconds

• Clitester - 23.60 seconds

• Smtester - 22.22 seconds

CM 1.24 Elapsed time for fetching a variant of a CM element.

Elapsed time for checking out various CM elements within the subsystems:

• Main -1.00 seconds

• Page_Terminal'Body -1.12 seconds

• Viewport_Manager'Spec -1.10 seconds

• Viewport_Manager'Body -1.16 seconds

CM1.25 Elapsed time for reserving a variant of a CM element.

CMU/SEI-88-TR-21 45

No corresponding operation in the Rational Environment.

CM 1.26 Elapsed time for replacing a variant of a CM element.

Elapsed time for checking in various CM elements within a subsystem:

• Main - 0.96 seconds

• Page_Terminal'Body -1.04 seconds

• Viewport_Manager'Spec -1.03 seconds

• Viewport_Manager'Body -1.05 seconds

CM1.27 File size increase caused by successive version?

Size of change to the logs and the size of the change to the Ada unit are
stored in 1024-byte chunks in the configuration database.

CM1.28 File size Increase caused by variant version?

Should be same as CM1.27, above.

CM1.29 How easy/difficult is It to fetch/reserve a CM element?

Very easy: press one key, <Check Out>.

CM1.30 How easy/difficult is It to replace a CM element?

Very easy: press <Check ln>.

CM1.31 How easy/difficult is it to create a variant version of a CM element?

Relatively easy, but must be done on the subsystem level with the
Make_Path or Make_Subpath command.

CM1.32 How are the reasons for version changes recorded? Is this mandatory
or optional data collection?

Comments parameter or through work orders. The data is optional but may
be set to mandatory through the use of work orders.

CM1.33 Can variant be placed into baselines easily?

Yes, copy the variant to the desired subsystems, and then release the sub-
system.

CM1.34 Are fetching/reserving/replacing variants harder than for non-variant
elements?

No.

CM1.35 What Is the default protection of a fetched CM file element? Is the de-
fault reasonable?

"Fetching" a CM file element is accomplished through reserving tokens in a
table. Read and Write access are not used on the Rational to accomplish
version control.

CM1.36 What is the default protection of a reserved CM file element? Is the
default reasonable?

See CM1.35.

CM1.37 Merging is defined to be the operation of incorporating the changes
made in a variant branch of a CM element back into the (current) main
trunk version of the original root CM element. Describe the mechanics
of merging variant versions of a CM element.

Cmvc.Merge_Changes allows the merging of Ada units in severed paths.

46 CMU/SEI-88-TR-21

The Cmvc.Merge_Changes command takes the name of the unit to have
changes merged into it, and the view name of the object whose changes are
to be applied.

The Cmvc.Accept_Changes allows the merging of Ada units in joined paths.
The object specified in the Destination parameter is changed to reflect any
modifications that have been made to corresponding source objects.

CM 1.38 How well are merge Inconsistencies identified?

Inconsistencies are identified by a text file generated which is the unit name
concatenated with "_Merging_Report." Conflicting lines are marked with an
asterisk and semi-colon (*;) followed by a number indicating which Ada unit
the line came from. The report is very clear.

CM1.39 How well are merge inconsistencies handled?

Can edit the inconsistencies, they show up in a resulting Ada unit as lines
beginning with "*;" and a number.

CM1.40 Elapsed time of merging variant versions of a CM element.

Elapsed time for merging:

• main.a into main: 7.58 seconds

• main.b into main: 6.17 seconds

• main.c into main: 5.40 seconds

Average elapsed time for merging variant versions of a CM element: 6.38
seconds.

CM 1.41 File size increase caused by merge operation.

• main.a into main: 2572 byte increase

• main.b into main: 5078 byte increase

• main.c into main: 6358 byte increase

Total increase for merging 3 variants back into main: 14008 bytes.

CM1.42 How easy/difficult Is it to merge existing variant versions of a CM file
element?

The Cmvc.Merge_Changes command is easy to use, and the documentation
is helpful.

CM1.43 Describe mechanics of reserving a CM element.

Make the unit to be checked out the current context by traversing the subsys-
tem directory structure with the <Definition> and cursor movement keys, and
press the <Check Out> key.

CM1.44 Describe mechanics of replacing a CM element.

See CM 1.24.

CMi .45 Elapsed time of reserving a CM element.

SeeCM1.26.

CM1.46 Elapsed time of replacing a CM element.

Timings of <Check ln>.

CM1.47 How easily do the generic experiments map onto environment
operations?

CMU/SEI-68-TR-21 47

Easily mapped, except that the experiment's concept of a "subsystem" differs
from the Rational model's concept of a "subsystem." Rational advocates that
subsystems be defined so that there are few dependencies across subsys-
tem boundaries.

CM1.48 How are CM files referenced? (local name, CM file name)

"File Names" as well as "CM files" are maintained by the system and default
to the Ada unit name.

CM1.49 Describe error handling capabilities and error diagnostics.

The error messages indicate that the CM/VC commands are actually imple-
mented through other system-level commands, and command execution
usually involves a long stream of messages to an execution window. Em-
bedded in these long streams are error messages indicated by leading aster-
isks, and sometimes they are not indicative of the problem.

CM1.50 Describe the command syntax. Awkward? Easy to learn and use?

Very consistent with the entire user interface except in one area: the Activity
Editor is not a "full screen" editor as are the Ada Editor and Text Editor.

The single keystrokes for Check In and Check Out, and the commands that
would be used in the day-to-day development and maintenance of a system
are easy to learn and use.

CM1.51 Multiple views of a software system in this context Is defined to be the
capability of representing the software system from differing perspec-
tives (e.g., functional subsystems versus baselined product class). Are
multiple views of a product supported? Is concurrent use supported?

Yes, many different working views of subsystems can exist at the same time.
The model allows different activities to pick up different sets of released and
working views. Multiple views and concurrent use are both supported. The
model allows for great flexibility, or policies can be established and enforced.

CM1.52 Is the CM capability Integrated into the compilation system?

Yes, a given Ada unit exists in source, installed, or coded state and can be
checked in or checked out in any of these states, although it is recommended
that a successful compilation (or coded state) be reached before the Ada unit
is checked in.

CM1.53 Describe Ada filename syntax.

Filenames are maintained by the system and are the Ada unit name. Any
valid Ada unit name is a valid "Ada filename."

CM1.54 Does all source code have to be in the same directory or is a hierar-
chical project structure supported?

No, source code can be maintained in several subsystems, or a hierarchical
project structure can be supported by subdirectories residing under the units
directory of a subsystem. In the Delta 0 release, a hierarchy of subsystems
is not supported.

CM1.55 What mechanism is used for sharing program libraries?

Links and imports (which are actually built on top of and used to maintain
links among subsystems).

CM1.56 Can a package spec and body be separated in different program
libraries?

No. However, a copy of the spec goes into the spec view to allow for minimal
recompilation and provide for "firewailing" between subsystems.

48 CMU/SEI-88-TR-21

CM 1.57 What intermediate files are generated by the compilation system?

None, an Ada unit moves between states, as the Diana Tree becomes more
or less decorated.

2.7. Experiment #2 Answers

Question Response

CM2.1 Describe the mechanics of displaying history information for a CM
element.

There are a number of Show commands:

• Show

• Show_AII_Checked_Out

• Show_AII_Controlled

• Show_AII_Uncontrolled

• Show_Checked_Out_By_User

• Show_Checked_Out_ln_View

• ShowJHistory, Show_History_By_Generations

• Show_lmage_Of_Generation

• Show_Out_Of_Date_Objects

All of these are invoked from a command window.

CM2.2 Elapsed time for displaying history Information for a CM element.

The elapsed time for Show_History_By_Generations for ail the Ada units was
33.03 seconds. This is approximately 2 seconds for each unit.

CM2.3 Describe the mechanics of rebuilding an earlier baselined system.

Invoke the Cmvc.Build command with the parameter configuration set to the
subsystem name concatenated with ".Configurations." and the view name.
Due to bugs in the configuration-only mode and the Build command, a
dummy text file named Release_History must be created in the State direct-
ory. It is also advised to invoke Cmvc_Maintenance.Check_Consistency on
the view. The bug also affects imports that are lost between subsystems and
must be respecified. The units in the subsystems must also be recompiled.

CM2.4 Elapsed time for rebuilding an earlier baselined system.

From a configuration-only mode, the Cmvc.Build command required 133.81
seconds; and 24.10 seconds elapsed for a recompilation of the system
across the five subsystems. Rebuilding the earlier baselined system required
a total elapsed time of 157.91 seconds.

CM2.5 Describe mechanics of fetching a CM element.

Refer to answer CM 1.16.

CM2.6 Elapsed time for fetching a CM element.

Refer to answer CM1.22.

CM2.7 Describe mechanics of deleting a CM element.

CMU/SEI-88-TR-21 49

Invoke the Cmvc.MakeJJncontrolled procedure with the parameter
What_Object set to the name of the Ada unit to be deleted. Then invoke the
Library.Delete procedure with the parameter Existing set to the name of the
Ada unit to be deleted.

CM2.8 Elapsed time for deleting a CM element.

Elapsed time to make an Ada unit uncontrolled: 1.71 seconds.

CM2.9 Describe mechanics of comparing different versions of a CM element.

The Show_History_By_Generations procedure provides a list of change
regions between versions.

CM2.10 Elapsed time for comparing different versions of a CM element.

Not applicable.

2.8. Configuration Management Aversion Control (CM/VC)
Analysis

Although the problems are many in number, they do not represent a serious performance prob-

lem for the Delta 0 Release of the configuration management and version control system. Ra-

tional Customer Support was very prompt in acknowledging the problems and suggesting

workarounds.

2.8.1. Functionality
The instantiation of Experiments #1 and #2 reflects one workaround required by a bug in the
system: A combined load view could not be released. When releasing combined load views,
which contain elements that depend on each other, the Release command goes into an infinite
loop. The transcripts for Experiments #1 and #2 also reflect some workarounds for other bugs

present in the Delta 0 Release of the CM/VC software. First, when a spec view is created from a
load view, a parameter Goal defaults to compilation state Coded. The compilation of specifi-
cations to coded state does not occur when the spec view is created. As such, the user must go
to the newly created spec view working units subdirectory and compile these units as a separate
step. Second, due to a bug in the creation of a subsystem release in configuration-only mode

and the Build command, the imports defined between spec views and load views were lost.

When the Build command attempted to recompile the system to coded state, it failed. This left

the released subsystems that were supposed to be frozen in an unfrozen state. Several steps
must be taken to reestablish the lost import information. Also, each view loses its

State.ReleaseJHistory text file. As such, copies of the views cannot be made by the Make_Path
or Make_SubPath commands. The work around consists of visiting the State subdirectory and
editing in a blank ReleaseJHistory text file. The loss of this file represents a potential loss of
information if comments are provided to the Release command.

The functionality presented by the configuration management and version control system pro-
vides all of the "Primary Activities" and "Secondary Activities" outlined in the functionality check-

lists for Experiments #1 and #2. Specifying translation rules as in a Unix Makefile does not apply
to the Rational Environment compilation strategy. Translation rules and order are maintained

automatically as interdependence information by the directory structure of the Rational Environ-

50 CMU/SEI-88-TR-21

ment. As such, translation rules are not needed. Translation tools do not need to be specified,

since one command procedure, Compilation.Promote, with the proper parameters handles trans-
lation. The Rational Environment provides a very complete set of CM/VC functionality as detailed

by the SEI Evaluation Method for the development, maintenance, and release of software.

2.8.2. Performance
From the perspective of a programmer using the CM/VC system, the most commonly used com-

mands, such as "Check In" and "Check Out," are fast and easy to use interactively. System
response for these common commands generally only required about one second of elapsed
time. Some of the less common commands, which would probably be invoked only by project

leaders or managers, required more time. The elapsed time for performing a baseline operation
across all five subsystems required over two minutes. When the baseline was released in
configuration-only mode, which would require that it be rebuilt later if needed, the elapsed time
required was under a minute. The time required for releasing a system would increase with the
size (number of lines of Ada code) of the system. For the system presented by the experiments,

an initial system build required a total elapsed time of slightly over two minutes.

The initial creation of an empty subsystem consumed 105,814 bytes. Constructing releases,

paths, and subpaths of a subsystem is by its nature also an expensive operation, as almost the

entire subsystem directory structure is copied. A disk utilization increase of about 100,000 bytes
was noted for each subsystem when a release was made. A subsystem may exist in
configuration-only mode, which does return some disk space to the file system. A return of almost

80,000 bytes of available storage was noted when one view of a subsystem was destroyed and
left in configuration-only mode. (Configuration-only mode would allow the subsystem to be rebuilt

if needed.)

2.8.3. User Interface
The user interface to the configuration management and version control commands is the same

interface as that used by all system commands. The commands are actually calls to Ada proce-
dures. The procedures are invoked from a command window, which provides context and a
begin-end block in which to insert the command. Command completion and the presentation of

default parameters are very useful in these procedures. Although the configuration management
and version control commands have the bugs previously noted and the problems described in the
following, the most commonly invoked commands are easy to use and bound to the program
function keys.

Version control is only available in the context of the subsystem structure. Objects placed in a
subsystem must be controlled explicitly when they are first placed in the subsystem. Subsequent

copies of the view created through the Make_Path or Make_SubPath will continue the object as a

controlled object. However, if access to the objects is not controlled, they are lost if the subsys-

tem is ever reduced to configuration-only mode. In this case, a simple oversight on the part of the

user can have disastrous results over the life cycle of a subsystem.

The editor provided for creating and changing Activities differs from the whole screen editor pro-

vided for Ada Objects or command windows. The Activity Editor actually involves providing

CMU/SEI-88-TR-21 51

parameters to procedures such as Activity .Add and Activity. Change to add or change the con-
tents of an Activity. It also requires pressing <Enter> to save changes. If this is not done,
changes are not saved, which often leads to unexpected performance. The Activity.Create com-
mand requires the value of parameter The_Activity to be supplied as a text string. The prompt for
this value supplies quotes that persist once the user has typed in a string. The optional
parameter Source requires the same type of value as The_Activity, yet the user is not provided
with quotes that persist once the user has typed in a string. Also, if quotes are not typed, then the
resulting error message is misleading:

Parameter list (THE_ACTIVITY => "B0__2", SOURCE => B0_1,
MODE => ACTIVITY.EXACT_COPY, ...) is invalid.

This is accompanied by an underscore appearing in the command window after "Activity.Create"
and underneath the parameter value B0_1.

View names cannot have underscores. This seems inconsistent since the view name is con-
catenated with "_Working" and used as a directory name. Directories that are created using the
regular directory creation commands do not have this restriction and can use any characters
permitted in an Ada name. The restriction stems from the inability of the Build command to
reconstruct a view with extra underscores in the name.

The configuration management and version control packages were released for the first time in
the Rational Environment Delta 0 Release. The bugs encountered and the problems with the
user interface reflect the immaturity of these packages.

2.8.4. System Interface
The configuration management and version control facility is completely integrated with the editor,
browser, and compiler of the Rational Environment. It does not make use of access control
facilities. The user is expected to construct "skins" which tie together the work order manage-
ment, configuration management and version control, and access control facilities to reflect user
policy for the system being created, tested, or maintained.

52 CMU/SEI-88-TR-21

3. System Management Experiments

3.1. Introduction
System Management Experiment #1 investigates the procedures supporting the installation of an

Ada software environment. The experiment requires the collection of information about loading
the software from release media, integrating the software with the underlying operating environ-

ment, and exercising the installed environment.

The R1000 computer, the Rational Environment for Ada development, and a Rational service
contract are a package. (Although the service contract is a separately priced item, Rational
strongly recommends it.) As part of the service contract, Rational technicians perform all system

software installation and updating. Also, the software does not need to be integrated with an
underlying operating environment, as in a more traditional APSE. For these reasons, and be-

cause the other experiments exercise the installed environment, Experiment #1 was not con-
ducted on the Rational Environment.

System Management Experiment #2 investigates the support of user account management activi-
ties. The operations of creating, deleting, modifying, copying, displaying, and verifying user ac-
count information are outlined in the experiment and instantiation in Section 3.2. Because the
only system management attributes associated with an account are account name, password,
and user group, some of the steps in the experiment are not applicable to the Rational Environ-
ment. However, many attributes and operations for work space management can be associated
with an individual account by the Rational Environment, including key bindings, macro definitions,

session switches, and so forth. However, these attributes and operations roughly correspond to
the workspace customization that can be performed by a VAX/VMS login file, not the system

management attributes required by this experiment.

System Management Experiment #3 does not contain individual steps and data collection. It is
an assimilation of questions that address the issues of maintaining current releases of the Ada

environment software, customer support and service, and archiving (and subsequently retrieving)
the Ada environment software and/or database elements. These questions are presented and
answered in Section 3.6.

System Management Experiment #4 investigates the procedure for the collection of accounting
statistics. The experiment addresses the issues of monitoring the system's performance and
collecting specific accounting information: CPU usage, disk space usage, connect time, and

number of pages printed. The experiment requires the development of procedures, one to auto-

mate the collecting of system accounting statistics and one to facilitate dynamic, continuous
monitoring of system's performance. Neither of these procedures had to be written for the exper-

iment, since the Rational Environment supplies this functionality, as detailed in Section 3.4.

In the following instantiation of the experiments, specific keys to be pressed are denoted by the
lettering on the key or key map designation enclosed in angle brackets (< >.) The first time a

command is presented in text, all its parameters are detailed. Parameters that must be supplied

CMU/SEI-88-TR-21 53

or changed are printed in italics. Subsequent uses of the command include only required
parameters and those that differ from the default. Familiarity with creating and executing a com-
mand, selecting an object, traversing objects in a window, and moving between windows is as-
sumed. Any variation in reporting the experiment step is noted.

3.2. Experiment #2

1. Experiment setup

a. Log in to environment as the system administrator.

{The R1000 does not have system administrator accounts. Members of
group Operator (user name Operator) and users with write access to file
!Machine.Operator_Capability can perform operations within the Environ-
ment that require operator capability. Log in to an account with operator
capability, in this case Operator. System prompts are in bold type and the
user response is in italics.}

Name: Operator <retum>
Password: {enter the password.} <return>
Session: <return>

b. Create subdirectory in which experimental results will be stored.

{Results gathered by using the timeit and record_size procedures are re-
ported to a standard output window. These programs are listed in Appendix
A with an explanation of their use.}

c. Establish environmental variables to be used in the experiment.

{None are used.}

2. Create environment user account group name ENV_USER. Measure time taken to
create new user account group. Record file size increase caused by creating a new
user account group.

Create_Group (Group => "Env_User\
Response => "<PROFILE>");

{Note: Access control groups are maintained in a directory IMachine.Groups, this is
what should be measured for the increase in size caused by creating a new user
account group.}

3. Create environment user account for John T. Smith; assume the last name is to be
used for the user name, password, and pathname of the account's home directory.
Measure time taken to create new user account. Record increase in file size
caused by creating a new user account.

{The R1000 environment automatically assigns the path or context "lUsers.A/ame"
to the home directory of a new user Name.)

Create_User (User => "Smith",
Password => "Smith",
Volume => 0,
Response => "<PROFILE>");

4. Add user Smith to user group ENVJJSER. Measure time taken to add new user to
an account group. Record increase in file size caused by adding new user to an
account group.

54 CMU/SEI-88-TR-21

Add_To_Group (User => "Smith",
Group => "Env_User,
Response => "<PROFILE>");

5. Copy Smith account characteristics into a new account for Thomas R. Jones; as-
sume the last name is to be used for the user name, password, and pathname of
the account's home directory. Measure time taken to copy characteristics into a
new user account. Record increase in file size caused by creating a new user
account.

{The Rational environment has no provision for copying accounts. Create user
Jones as in step SM2.3 and SM2.4.}

Create_User(User => "Jones",
Password => "Jones") ;

Add_To_Group (User => "Smith",
Group => "Env_User,
Response => "<PROFILE>");

6. Copy Smith account characteristics into a default account named DEFAULT to be
used in the future for creating new environment accounts. Measure time taken to
copy characteristics into a new user account. Record file size increase caused by
creating a new user account.

{The only default account characteristic in the Rational Environment is the
password. Access to certain groups is added later. Below are the details showing
how to create an Ada program Create_Default_Account. When this program is run
from an account with operator capability, with no user name provided, it will create
a user DEFAULT with password "default and place the user in group ENVJJSER.)

<Create Ada>
Create_Default_Account
<Promot>
(Enter the following in the edit window,
which opens:}
with Operator;
procedure Create_De£ault_Account

(Name :String =: "Default") is
begin
Operator.Create_User(User => Name,

Password => Name,
Volume => 0,
Response => "<PROFILE>");

Operator.Add_To_Group(User => Name,
Group => "Env_User,
Response => "<PROFILE>");

end Create_Default_Account;

(Type the following to compile and store the
program:}
<Promot>
<Promot>
<Enclosing>

{Create default account DEFAULT by executing the procedure just created.}

(Check that Create_Default_Account'body is selected.}
<Promot>

CMU/SEI-88-TR-21 55

7. Disable logins for the DEFAULT account. Measure time taken to disable logins for
an account.

Delete_User (User => "DEFAULT",
Response => "<PROFILE>");

8. Display characteristics of the DEFAULT account. Measure time taken to display
account characteristics.

{Cannot display account characteristics of a disabled account.}

9. Change account name of the DEFAULT account to be ENV_USER. Measure time
taken to modify one characteristic of a user account. Record increase in file size
caused by modifying a characteristic of a user account.

{No procedure provided to change an account name.}

10. Display characteristics of the DEFAULT account. Measure time taken to display
account characteristics.

{See step 8.}

11. Modify account names as above (step 9) for the Smith and Jones accounts.
Measure time taken to modify one characteristic of a user account. Record file size
increase caused by modifying a characteristic of a user account.

{One account characteristic which can be modified is the password.}

Change_Password(User => "Smith",
01d_Password => "Smith",
New_Password =*> "newsmith",
Response => "<PROFILB>");

Change_Password(User => "Jones",
01d_Password => "Jones",
Hew_Password => "newjones");

12. Display characteristics of the Smith and Jones accounts. Measure time taken to
display account characteristics.

Display_Group (Group => "Smith",
Response => "<PROFILE>");

Display_Group(Group => "Jones") ;

13. Create an account for Jane Doe using characteristics from the DEFAULT account;
assume the last name is to used for the user name, password, and pathname of the
account's home directory. Measure time taken to copy characteristics into a new
user account. Record file size increase caused by creating a new user account.

Create_Default_Account(Name => "Doe");

14. Create working directories containing login/logout command procedures for the
Smith, Doe, and Jones accounts. Measure time taken to create initial account
directories.

{The Rational Environment command that creates accounts automatically creates a
user home directory with the pathname OJser.user name. This was performed in
steps 3, 5 and 13.}

15. Update any environment-specific databases to grant Smith, Doe, and Jones ac-
cess to the environment software.

{Since the Rational Environment is not a system layered on top of a traditional

56 CMU/SEI-88-TR-21

environment, commands to create a user account automatically provide access to
the environment. Steps 3, 5 and 13 have already accomplished this.}

16. Verify the creation and correctness of the Smith, Doe, and Jones accounts (e.g.,
login and edit a text file from these accounts).

{Log off the RIO00 account Operator)
<Home Library>
<Create Command>
Quit
<Promot>
{Log in as Smith. System prompts are
in bold type, and user response is
in italics.}
User: Smith <Retum>
Password: Smith <Return>
Session: <Return>

{Create a text file.}
<Create Text>
My_file
{In edit window, which opens, type:}
This is a text file.
{Store the text file.}
<Enter>

{After My_file appears in the Smith home
directory, log out.}
<Create Coxnmand>
Quit
<Promot>

{Repeat the above steps for the accounts
Doe (password: Doe) and Jones
(password: newjones).}

17. Revoke environment access from the Jones account. Measure time taken to
revoke environment access from a user's account.

Delete_User (User => "Jones") ;

18. Remove Jones account from the ENV_USER account group. Measure time taken
to remove user from an account group. Record decrease in file size caused by
removing user from an account group.

Remove_From_Group(User => "Jones",
Group => "Env_User,
Response => "<PROFILE>");

19. Remove Jones account. Measure time taken to remove user account. Record
decrease in file size caused by removing user account.

Library. Destroy (Existing => " lUsers.Jones??" ,
Threshold => 1,
Limit => "<DIRECTORIES>",
Response => "<PROFILE>");

CMU/SEI-88-TR-21 57

3.3. Experiment #2 Functionality Checklist

Activity Step # Supported
(Y/N)

User Account Management
Create user account 3,13 Yes
Delete user account 19 Yes
Copy user accounts 5 No

Add user account to group 4 Yes

Delete user account from group 18 Yes

Establish user account characteristics 3,5,13 Yes

Modify user account chars 11 Yes
Establish default account chars 6 No

Modify default account chars 9 No
Display user account chars 12 Yes
Display default account chars 8,10 No
Create initial working directories 14 Yes

Establish default login/logout macros 14 No

Verify creation of user accounts 16 Yes

Observations

Only system management characteristic
is the account password. Membership
in a user group is added later.

Password and group membership.
Can create a program to build default
account.

Can display group membership.

Default working directories are created
automatically by the create user account
procedure.

Default system wide login procedures
(which can be changed) are
automatically used for all users who
do not override them with procedures
in their home directory.

3.4. Experiment #4

1. Experiment setup

a. Log in to underlying operating system as the system administrator.

{The Rational Environment has no system administrator account. There-
fore, log in as an ordinary user and acquire operator capability.}

b. Create subdirectory in which experimental results will be stored.

{As will be seen, this experiment generates no results to be logged.}

c. Establish environment variables to be used in the experiment.

{None are used.}

2. Establish default access control to restrict non-privileged users' access to all com-
mand files and log files to be used for System Management activities.

{The Delta Release of the Rational Environment already restricts access of non-
privileged users to system management commands by requiring operator capability
for certain commands.}

58 CMU/SEI-88-TR-21

3. Create a subdirectory named BILLINGS under the system root directory to house
environment accounting statistics.

{The directory name for accounting information is hardwired into the Rational Envi-
ronment as [Machine.Accounting }

4. Initially, enable the logging of environment accounting information. Measure time
taken to enable logging of accounting information.

• CPU usage

• Connect time

• Disk usage

• Number of logins

• I/O activity

• Pages printed

{Usage logging in the Rational Environment is always enabled. Usage accounting
is monolithic; there is no separate enabling of accounting for different resources.}

5. Write a command procedure to automate the monthly collection of accounting infor-
mation to be used by a billing program, assuming logging is already enabled.
Measure time taken to disable system logging. Record size of system accounting
log file.

{The current accounting file cannot be renamed, moved, or copied while the system
has a lock on it. To remove the lock, the system must be shut down and rebooted
(which creates a new file in Machine.Accounting with the date of reboot included in
the file name). Thus, the only step performed is b.}

a. Disable the logging of environment accounting information.

{Have operator reboot the system at midnight at the end of the month to
close the old accounting file.}

b. Rename current accounting log file to a file of the form: mmmddyy.LOG
where

mmm - previous month (e.g., Jan)

dd - last day of previous month (e.g., 31)

yy - year of the previous month (e.g., 88)

<Create Command>
"Library.Rename"
<Complt>
Library.Rename(From => "<SELECTION>",

To => "»NEW SIMPLE NAME«",
Response => "<PROFILE>");

{Supply as value to parameter From: }
" Act i vi t y_8 8_01_0 9_At_l 1_16_14 "
<Next Item>
{Supply as value to parameter To:}
"Jan3188_Log"
<Promot>

{If the system has been rebooted more than once in a time period, then

CMU/SEI-88-TR-21 59

multiple files for the time period will be generated and must be concatenated
to generate one file for the period.}

c. Re-enable the logging of environment information.

{Logging was enabled for the new time period when the system was
rebooted in step 5.a.}

6. Write a command procedure to continuously monitor the system's performance
(i.e., number of processes currently active, CPU usage per process, physical mem-
ory user per process, program image running under process, page faults, etc.).

{This procedure already exists in the Rational Environment.}
<Create Command>
{Command window opens, and enter:}
"What.Jobs"
<Complt>
What.Jobs(Interval => 10,

User_Jobs_Only => raise,
My_Jobs_Only => False,
Running_Jobs_Only => True);

{Use all the default values.)
<Promot>
{System monitoring begins.)

3.5. Experiment #2 Answers

This section has been truncated to eliminate those evaluative questions for which the R1000
lacks required capabilities.

Question Response
SM2.1 Describe the mechanics of creating a user account group.

Create a command window and enter the command:
Create_Group (Group => "»GROUP NAME«";

Response => "<PROFILE>");

Supply the desired group name as the value for the parameter Group.

Execution of this procedure requires that the executing job have operator
capability.

SM2.2 Elapsed time for creating a user account group?

Wall Clock Time: 2.49 seconds
CPU Time: 0.46 seconds

SM2.3 File size Increase caused by creating a user account group?
IMachine.Groups increased by 1 byte after adding a user account group.

SM2.4 Describe the mechanics of creating a user account.

Create a command window, and enter the command:
Create_User (User => "»USER NAME«";

Password => "";
Volume => 0;
Response => "<PROFILE>") ;

Supply the desired user name as the value for the parameter User, and if an
initial password is desired, enter it as the value for the parameter Password.

60 CMU/SEI-88-TR-21

Execution of this procedure requires that the executing job have operator
capability.

SM2.5 Elapsed time for creating a new user account?

Wall Clock Time: 6.48 seconds
CPU Time: 4.24 seconds

SM2.6 File size Increase caused by creating a new user account?

File increase results from creation of an entry in the world Machine. Users
and creation of a home world for the user. File size increased by 7473 bytes.
There was no direct correlation with the length of the user name or password.

SM2.7 How easy/difficult is It to create a new user account?

Creating a new user account is straightforward since only one procedure,
!Commands.Operator.Create_User is called from a Rational command win-
dow.

SM2.8 Describe (In detail) the user account information maintained.

User account name, user password, and user account group membership.

SM2.9 What are the resource requirements of an environment user?

Since the Rational Environment is not layered on top of a traditional operating
system, this question is not applicable.

SM2.10 What privileges are necessary for an environment user?

There are no additional privileges required by the user, other than access to
his home world (i.e., the account login is not disabled).

SM2.11 Describe mechanics of adding a user account to a user group.

Create a command window and enter the command:

Add_To_Group (User => "»USER NAME«";
Group => "»GROUP NAME«";
Response => "<PROriLE>");

Supply the desired user name as the value for the parameter User, and
supply the desired group name as the value for parameter Group.

Identities are established at login. Adding a user to a group will not be effec-
tive until the user's next login. The user must log out and then log in again
for the new group membership to be added to the user's identity.

Execution of this procedure requires that the executing job have operator
capability.

SM2.12 Elapsed time for adding a user account to a user group?

Wall Clock Time: 0.07 seconds
CPU Time : 0.05 seconds

SM2.13 File size Increase caused by adding a user account to a user group?

!Machine.Groups.Env_User increases by 1 byte.
IMachine.Groups. User_Name increases by 1 byte. Any other storage costs
could not be measured.

SM2.14 How easy/difficult is it to add a user account to a user group?

It is very easy to add a user account to a user group. It only requires one
command, and standard environment techniques (such as window creation
and command completion) facilitate entering the command.

CMU/SEI-88-TR-21 61

SM2.15 Describe the mechanics copying old account characteristics into a new
account

The Rational Environment does not support copying of old account character-
istics into a new account. However, a program can be developed using the
Operator commands to create an account, give it a password, and add it to
certain user groups. See System Management Experiment #2, Steps 6 and
13, for an example of the creation and use of a default account creation
program.

SM2.16 - SM2.18 Accounts cannot be copied.

SM2.19 Describe the mechanics of disabling logins for a user account.

Make sure that the user is logged out before disabling the user's account.
Create a command window and enter the command:

DeleteJJser (User => "»USER NAME«";
Response => "<PROFILE>");

Supply the desired user name as the value for the parameter User.

Execution of this procedure requires that the executing job have operator
capability.

SM2.20 Elapsed time for disabling logins for a user account?

Hall Clock Time: 1.77 seconds
CPU Time : 0.89 seconds

SM2.21 File size Increase caused by disabling logins for a user account.

There is no change in file size when logins to a user account are disabled.

SM2.22 How easy/difficult is it to disable logins for a user account?
It is very easy to disable logins to a user account. It only requires one com-
mand, and standard environment techniques (such as window creation, com-
mand completion) facilitate entering the command.

SM2.23 Describe mechanics of displaying user account characteristics.
The Rational Environment supports a limited number of "account
characteristics"; see Question SM2.8.)

It is not possible to display a user's password. To display the user groups to
which a user belongs, create a command window and enter the command:

Display_Group (Group => ">X3ROUP NAME«";
Response => "<PROFILE>");

Supply the desired user name as the value for the parameter User.

SM2.24 Elapsed time for displaying user account characteristics?
To display the user groups a user belongs to:

Wall Clock Time: 0.03 seconds
CPU Time : 0.02 seconds

SM2.25 How easy/difficult is it to display user account characteristics?

The only characteristic that can be displayed is the user groups to which a
user belongs. This is very easy to display, requiring only one command.
Standard environment techniques (such as window creation and command
completion) facilitate entering the command.

SM2.26 Describe the mechanics of modifying a user account's characteristics.

62 CMU/SEI-88-TR-21

The password of a user account can be changed by creating a command
window and entering the command:

Change_Password(User => "»USER NAME«";
01d_Password => "";
New_Password =>
Response => "<PROFILE>";

See SM2.33 for removing a user from a user group and SM2.11 for adding a
user to a user group.

SM2.27 Elapsed time for modifying a user account's characteristics.

To change a user password:

Well Clock Time: 0.03 seconds
CPU Time : 0.02 seconds

See SM2.34 for elapsed time of removing a user from a user group, and see
SM2.12 for elapsed time of adding a user to a user group.

SM2.28 File size increase caused by modifying a user account's
characteristics?
There is no change in file size for changing a user's password.

See SM2.35 for file size change caused by removing a user from a user
group. See SM2.13 above for file size change caused by adding a user too a
user group.

SM2.29 How easy/difficult Is It to modify an existing user account's
characteristics?

It is very easy to change a user password. It only requires one command
and standard environment techniques (such as window creation and com-
mand completion) facilitate entering the command.

See Questions SM2.14 and SM2.36 for ease/difficulty of adding or deleting a
user from a user group.

SM2.30 Describe the mechanism for creating a home directory for a new user
account
The Rational Environment command that creates accounts automatically
creates a user home directory with the pathname lUser.user name. See
Question SM2.4 for mechanics of creating a user account.

SM2.31 What Is the default protection for a user's home directory for a new user
account. Is this default modifiable? If so, by whom? (user alone, user
and system administrator) Is this default protection reasonable?
The Rational Environment does not set up protections for a user's home di-
rectory. When a user name is created, a group name corresponding to that
user name is created by default. The user name is, by default, a member of
that group, as well as a member of group Public and NetworkPublic. By
default, other users have access to read, modify, and change the state of
Ada objects in another user's home directory or subdirectories; however,
other users do not have the ability to delete objects in another user's home
directory. The read and edit capabilities are by virtue of the users' belonging
to the Public group. This default can be modified by removing a user from
the Public and Network_Public groups. The user can remove his user
name from groups. Addition to a group requires operator capability. The
default protection, which allows a user to modify objects in another user's
directory, does not seem reasonable.

CMU/SEI-88-TR-21 63

SM2.32 What mechanism, if any, is employed to restrict access to the environ-
ment software? How can a user gain access to environment software.

The Rational Environment software is provided as executable code on the
system only, so access to modify or view is not available.

SM2.33 Describe the mechanics of removing a user account to a user group.

Create a command window and enter the command:
Remove_From_Group(User => "»USER NAME«";

Group => "»GROUP NAME«";
Response => "<PROFILE>");

Supply the desired user name as the value for the parameter User. Supply
the desired group name for the value of the parameter Group.

Execution of this procedure requires that the executing job have operator
capability.

SM2.34 Elapsed time for removing a user account to a user group?

Wall Clock Time: 0.11 seconds
CPU Time : 0.04 seconds

SM2.35 File size decrease caused by removing a user account to a user group?

There is a 1 -byte decrease in file size.

SM2.36 How easy/difficult Is It to remove a user account from an account
group?
It is very easy to remove a user account from an account group. It only
requires one command, and standard environment techniques (such as win-
dow creation and command completion) facilitate entering the command.

SM2.37 Describe the mechanics of deleting a user account?

The procedure ICommands.Operator.DeleteJJser is called from a command
window and disables login to a user account, but preserves the user's home
world. The procedure Library.Destroy removes the user's home world.

SM2.38 Elapsed time for deleting a user account?

See Question SM2.20 for elapsed time to disable logins for a user account.

The elapsed time to execute the Library.Destroy command:

Hall Clock Time: 1.10 seconds
CPU Time: 0.49 seconds

SM2.39 File size decrease caused by deleting a user account?

No file size decrease was seen when disabling logins, and a 7556-byte
decrease was seen when the user's home world was removed.

SM2.40 How easy/difficult is it to delete a user account?

Deleting a user account is straightforward. It involves calling the
Operator.DeleteJJser procedure and Library.Destroy commands from a
command window.

SM2.41 How easy/difficult Is it to learn the command syntax of the user account
manager utility?
The Rational Environment has no "user account manager" utility. Either a
user account (called "Operator") with operator capabiliy can be created, or
any user can be granted operator capability. For some commands to ex-

64 CMU/SEI-88-TR-21

ecute, the executing job must have operator capability. Because the syntax
of these commands is consistent with other Rational Environment com-
mands, the system management commands are easy to use.

SM2.42 Is the user interface of the user account manager utility consistent to
those of similar tools?

The system management commands are very consistent with the rest of the
Rational Environment commands.

SM2.43 How useful are the error diagnostics of the user account manager
utility?

The error diagnostics are good, and they are consistent with error diagnostics
present for other commands.

SM2.44 How well Is the user account manager utility documented? Is there an
online help facility?

Those commands requiring operator capability are documented mostly in the
System Management Utilities volume of the Rational Environment reference
manuals. The commands are well documented.

Online help is available for commands in the 'Commands.Operator package.

SM2.45 How well is the user account manager utility Integrated Into the under-
lying operating environment?

The Rational Environment is not layered on top of any operating environ-
ment; as such, operator capability is a part of the Rational Environment.

SM2.46 Describe the operating system's protection scheme. Protection
masks? Access control lists?

The Rational Environment is the operating system, and its protection scheme
is access control lists.

SM2.47 Describe the environment's protection scheme. Does the environment
offer any more or less protection than the underlying operating sys-
tem? If so, describe the differences.

See Question SM2.46.

SM2.48 How and where Is user account information maintained? (text file, bi-
nary file)

User account information is maintained as an entry in the !Machine.Users
directory.

SM2.49 What kind of scheme is used to protect account information?

A person changing the user account information must have the operator ca-
pability.

SM2.50 Can passwords be displayed in humanly readable format?

No.

SM2.51 What, if any, unique account attributes are available? Disallow chang-
ing of an account's password. Restricted system access based on cur-
rent date and time? System-generated passwords? Automatic
password expiration after a setable time period?

Accounts have passwords, and a user may belong to certain user groups;
these are the only account attributes available. There is no way to disallow
the changing of an account's password. There is no way to restrict system
access based on current date and time. There are no system-generated
passwords. There is no capability for automatic password expiration.

CMU/SEI-88-TR-21 65

SM2.52 is a command procedure provided for creating new user accounts?

Yes, the Ada procedure Operator.Create_User creates new user accounts.

SM2.53 Is a command procedure provided for removing user accounts?

Yes, the Ada procedure Operator. Delete_User deletes user accounts.

3.6. Experiment #3 Answers

Question Response

SM3.1 What is the overall process for updating the environment software?

Rational technicaJ personnel perform all updates of system software. The
form of software update provided up to this time has been a complete new
release of the system software.

SM3.2 How frequent are new software releases?

Rational has marketed its system for about three years at the time of this
evaluation. During this time there have been four releases, the original and
three updates. This may imply that releases will occur a little more frequently
than annually, but it is too early to assume that in the future they will continue
to be as frequent.

SM3.3 Are new releases accompanied by release notes? Updating
procedures?

The Rational Environment Delta Release was accompanied by a complete
new set of manuals for the Environment. There are online release notes and
a message describing how to read and print them upon login.

SM3.4 Are new releases downward compatible? Are new releases upwards
compatible, or do they supersede all previous releases?
The Delta Release required some software that used some Rational-specific
options to be rewritten. All Ada programs had to be recompiled, once the
Delta Release was installed. The degree of compatibility between releases
depends upon the features of the new release and is documented by the
release notes. All new releases supercede previous releases.

SM3.5 Can a new release be installed within a multi-user environment or must
the machine be In the single user mode?

SeeSM3.1.

SM3.6 Can multiple versions of the environment be running simultaneously?

No.

SM3.7 What is the procedure for fixing bugs that are uncovered between
releases? (object code patches, new object code, entirely new software
release)
Bugs in the kernel of the operating system are fixed with new system soft-
ware releases. Changes can be made to the Environment procedures that
appear in the Rational directory structure by recompiling the Ada units in-
volved. If bugs are found in this part of the Environment, Rational technicians
will make required changes and recompile that part of the system.

SM3.8 Is patching of executable images supported? If so, is It facilitated via a
command procedure?

No. As noted above, some parts of the OS can be recompiled.

66 CMU/SEI-88-TR-21

SM3.9 Can patches be applied within a multi-user environment or must the
machine be in single-user mode?

SeeSM3.1.

SM3.10 How easy/difficult is it to update the environment software?

SeeSM3.1.

SM3.11 How much human intervention is required during the updating
procedure?

SeeSM3.1.

SM3.12 How easy is it to recover from errors during the update procedure?

SeeSM3.1.

SM3.13 How well is the update procedure documented?

The update procedure is documented only in documentation used by Ra-
tional field service technicians.

SM3.14 Newsletter? What is the frequency of publication?

The Rational User's Group publishes a quarterly newsletter.

SM3.15 Interest and/or user groups?

There is a Rational User's Group which meets quarterly. It also holds an
annual international meeting.

SM3.16 Is there a dial-up computer number to access a database of previously
encountered bugs?

A list of problem reports made to Rational is available through their Support
Information Management System (SIMS). However, the primary purpose of
SIMS is to facilitate customer contact with Rational headquarters. The list of
problems is not particularly useful as a set of bug reports because it is unin-
dexed, and because hardware problems that are not of general interest are
included in the problem database. See SM3.20 for further information about
SIMS.

SM3.17 Level of Software support? Levels are defined as follows:

Level 1

7 day, 12-24 hour phone service; maintenance; revised versions of soft-
ware and documentation; on-site consultation regarding problems.

Level 2

5 day, 8-12 hour phone service; maintenance; revised versions of soft-
ware and documentation; remote consultation regarding problems.

Level 3

no phone service; no maintenance; revised versions of software and
documentation; no consulting support; submit software trouble reports
formally in writing.

Rational provides level 1 phone service and 1 consultation. The
hardware/software maintenance contract includes phone access to the Ra-
tional 24 hour/7 day Response Center. See SM3.18. Revised versions of
software are installed as part of regular maintenance. Revised documen-
tation is provided with revised software.

SM3.18 What is the cost for software maintenance?

CMU/SEI-88-TR-21 67

Software maintenance is bundled with Rational's overall customer support
fee, which is $4500 per month in January 1988 for the Rational R1000 Model
200-20. The customer support fee has remained at that cost since the intro-
duction of the Model 200-20 in November 1986. This fee includes compre-
hensive hardware and software onsite support. The hardware support in-
cludes parts and on site labor. The software support includes all updates,
upgrades, and documentation.

SM3.19 Is remote maintenance offered (i.e., vendor dials into system under
maintenance contract to service remotely)?

A diagnostic modem is part of the standard Rational hardware configuration.
If certain system failures occur the Rational computer itself will call Rational
and request that a customer representative be paged. The diagnostic
modem will also be used as needed to diagnose customer reported problems
as part of the standard maintenance contract.

SM3.20 What is the method of reporting software bugs? Are there any auto-
mated tools available to report errors (e.g. a program that makes it easy
to fill in the form that must be delivered to report the error or an elec-
tronic address to mail the problem report?).

The standard Rational configuration includes a terminal dedicated to contact-
ing Rational's Support Information Management System (SIMS). This termi-
nal is used for electronic mail between the user and Rational and for logging
problem reports. SIMS provides screen forms that the user fills in for sending
mail messages and entering problem reports. A bulletin board containing
news is available through SIMS.

SM3.21 Average turnaround time from bug report to bug fix to distribution of
patch?

Turnaround time for fixes to the kernel is the interval between system
releases. This was stated in the answer to SM3.2. Part of the job of Rational
service representatives is to help customers develop workarounds to kernel
bugs discovered in the interval between system releases. Company policy is
to provide problem solutions rather than kernel patches so that the software
in the field will be a known entity to service representatives developing the
solutions.

Fixes to the functional part of the OS will be implemented as soon as the
Rational technicians find the bug. Patches are not distributed; rather the
section of code containing the bug is edited and recompiled.

SM3.22 Is the software covered under a warranty? If so for how long?

No.

SM3.23 What is the policy and procedure for acquiring 3rd party software that
will execute within the Ada environment? Is there an integration kit
available to aid in Integrating 3rd party software Into the environment?

Since the Environment runs Ada exclusively, only those third party tools writ-
ten in Ada can be ported to the Environment. The Rational Environment
supports ANSI standard tape format (such as is generated by VAX/VMS) and
Ethernet as a means of importing programs. Although the Environment does
not store Ada source in text format, TextJO can read Rational Ada objects
as though they were text. Thus, imported tools requiring read access to Ada
source in text format will work provided they use TextJO to access text files.
Tools requiring access to system services (such as the directory system) will
find that sections of the visible operating system interface (such as the proce-

68 CMU/SEI-88-TR-21

dures that access the directory structure) are undocumented. Rational tech-
nicians will provide assistance to users who are attempting to solve problems
that require use of undocumented portions of the Environment system.

SM3.24 Are full disk backups supported for both the software and the
database?

Yes, the full backup procedure takes a snapshot of the entire Environment.
Rational recommends a weekly full backup.

SM3.25 Are Incremental disk backups supported for both the software and the
database?

Yes; primary backup procedure records changes to the Environment since
the last full backup procedure. Rational recommends a daily primary backup.

SM3.26 is there automated support for restoring the software and/or database
element from the backup?
The entire process of both generating an Environment backup and restoring
the Environment from primary or full backup is prompted from the operator's
console. The restoration operation restores the entire Environment. There is
no capability for restoring selected files from a full or primary backup. Indi-
vidual users can request source archiving for selected files or directories.
Rational does not recommend backing up the entire Environment in source
archive form because performing a source archive of the entire Environment
would be a very resource-intensive and long-running process.

3.7. Experiment #4 Answers

Question Response
SM4.1 Describe the mechanics of enabling the logging of system accounting

Information.
Logging of accounting information on the Rational R1000 is enabled by creat-
ing a directory called IMachine.Accounting when the system is booted.
When the system is booted, a file is created that contains the date and time
of the reboot. Disabling logging requires the intervention of a Rational techni-
cian and involves changing the system boot procedures. The files in this
directory contain records of machine use between system reboots, with each
file being given a name containing the data of reboot. To generate files that
contain accounting information for a given time period, the system must be
rebooted at the end of each period. Within each file a record is generated
that logs usage data for each user session, system-initiated job, and user-
initiated background job that terminates after the user session that initiated it.

A session is a user interaction with the Rational Environment from logon to
logoff. Accounting information for a session includes the resources used by
all user-initiated background jobs that terminate during the session. Sessions
have names that appear in the accounting files. The names represent sets of
session switches that control Rational Environment attributes, such as max-
imum number of windows on the Rational display. Users edit a set of session
switches to define a desired working environment. The session names are
therefore not arbitrarily chosen, but selected by the user at logon from a set
of already defined session names. If the user logs on with a session name
that does not exist, the Rational Environment offers the user the choice of
aborting the login or creating the session with its concomitant set of session
switches.

CMU/SEI-88-TR-21 69

SM4.2 Elapsed time for enabling the logging of system accounting
information?

Enabling logging requires only the time for directory creation, which is given
in the Design and Development Experiment.

SM4.3 Describe the mechanics of disabling the logging of system accounting
information.

The Rational Environment is designed to have accounting always enabled.
Disabling logging requires intervention of a Rational technician.

SM4.4 Elapsed time for disabling the logging of system accounting informa-
tion?

See SM4.3.

SM4.5 What are the disk space requirements of the accounting log file?

Each entry in an accounting log file is a line of text consisting of a fixed length
and a variable length part. The first sixty-one characters record all infor-
mation except the user name and session name. The variable length part
contains the user name and session name.

SM4.6 What is the execution overhead associated with continuous collection
of accounting statistics?

According to Rational designers at company headquarters, the overhead is
so low that an attempt to measure it would be masked by such noise factors
as disk latency. The statistics collection is part of the activity of the system
daemon and cannot be separated at the programmer interface level from the
measurement of the system daemon activity.

SM4.7 What kind of system accounting information can be collected? CPU
usage? Connect time? Disk usage? Number of logins? I/O Activity?
Pages printed?
For each user session, the following information is logged: time and date
session starts and ends, elapsed time, CPU time, number of disk requests
and number of jobs executed during the session. The user session infor-
mation about CPU time and disk requests is a cumulative summary of the
usage information about all the jobs initiated by the user that terminated dur-
ing the session. The same information is logged for user-initiated jobs that
extend beyond the end of the session, as well as for background jobs in-
itiated by the Rational Environment itself.

SM4.8 Are callable program interfaces provided for collecting accounting sta-
tistics? If so, do these Interfaces support all appropriate services pro-
vided by the underlying operating environment?
The callable interfaces for accounting statistics provided by the Rational Envi-
ronment return elapsed CPU time and current working set size for a job.

SM4.9 What format is employed for the accounting log file (ASCII text, com-
pressed binary)?

Accounting information is stored in ASCII text files.

SM4.10 Describe the mechanics of dynamically monitoring the system's
workload.

The Rational Environment provides three procedures for monitoring the sys-
tem workload. One of these, What.Jobs, continuously monitors the load and
updates a screen display at a user-specified interval. The other two,
What.Load and What.Users, provide snapshots and terminate after gener-

70 CMU/SEI-88-TR-21

ating one screen display. What.Jobs is invoked by opening a command win-
dow, entering What.Jobs, and promoting the command window. What. Users
and What.Load are bound to the keyboard and are invoked with a single
keystroke.

SM4.11 What Is the execution overhead associated with dynamically monitoring
the system's workload?

What.Jobs does not show up in the What.Jobs window as a separate job.
Therefore, the overhead it creates must be reported as part of either general
system overhead or as part of the overhead of an idle user session (which is
relatively stable at 1.75 percent of CPU time). Where the What.Jobs over-
head is reported cannot be determined. From the user's point of view, in-
vocation of the What.Jobs command simply causes the cursor to update a
What.Jobs window at a user-specified interval (which has a default value of
ten seconds). The user can work in other windows while monitoring the
system.

SM4.12 What type of system workload monitoring is supported? Which of the
following can be monitored: Page faults, Swapping, I/O activity, Memory
Usage, Process w workloads.

The information provided by the three system monitoring procedures de-
scribed in SM4.10 is listed separately.

What.Jobs lists for each job the following:

• user name (of user who started job)

• session name

• job number

• status (run, idle, wait, disabled, queued)

• elapsed time for job

• total CPU time for job

• percentage of CPU time consumed by job

• working set size

• disk waits since job inception

• job name

What.Users lists the following for each job initiated by a currently active user:

• user name

• port number

• job number

• status (run, idle, wait, disabled, queued)

• elapsed time for job, and

• job name

What.Load(False) lists the average number of tasks eligible for CPU time
over the last 100 milliseconds, the last minute, the last 5 minutes, and the last
15 minutes. When invoked with the verbose parameter set to true (the
default), it displays the number of tasks able to be run, averaged over the last

CMU/SEI-88-TR-21 71

100 milliseconds, 1 minute, 5 minutes and 15 minutes. It also displays the
number of tasks waiting for pages from disk and the number of withheld jobs
averaged over the four time periods.

SM4.13 Does a report generator exist for summarizing the accounting logs?

Yes, a report generation tool is available in !Tools.System_Availability.

SM4.14 Describe the mechanics of reconfiguring and rebooting the system.

Reconfiguration of the operating system for performance involves two sepa-
rate activities, scheduling the clients of the system daemon and setting the
parameters for the system scheduler. Either activity can be performed by
calling Environment procedures interactively or by incorporating calls to Envi-
ronment procedures into the initialization procedure that is run as part of sys-
tem booting. Interactive invocation follows the standard Rational method of
executing a procedure from a command window. Incorporating procedure
calls into the system initialization procedure follows the standard Rational
methods for program editing and compilation.

The daemon's clients are procedures that perform housekeeping functions,
such as disk garbage collection, in the Rational Environment. Scheduling
these clients is important as several of them consume so many machine
resources that the system is unusable when they are running, and others
noticeably slow the system. Rational estimates that the period that the Ra-
tional system will be rendered unusable by daemon's clients will range from
two to six hours per day, depending on the workload. The higher the work-
load, the more housekeeping the daemon's clients must perform.

The system scheduler allows tailoring of system-wide parameters for the al-
gorithms that allocate CPU time, memory, and disk resources to the system
jobs.

Additional system configuration capabilities are offered by the package Ter-
minal, which allows setting communication port parameters, and by the pack-
age Queue, which provides for the management of print queues (creating
print device lists, assigning queues to devices, etc.).

The Rational R1000 has a hardware switch to determine whether system
reboot will be manual or automatic. The manual reboot process is used only
by Rational technicians. When the hardware switch is set to automatic,
rebooting the system proceeds automatically after calling the system shut-
down procedure or when powering up the system. The system can be con-
figured so that reboot is completely automatic or so that the operator must
press <return> at the system prompt "Enter configuration to boot [Standard]."

SM4.15 Elapsed time of reconfiguring and rebooting the system?

System rebooting usually requires fifteen to twenty minutes. When system
configuration procedures are called interactively, they execute within a few
seconds. The initialization procedure executed at system reboot can be al-
tered as fast as the user can edit it.

SM4.16 How easy/difficult is it to reconfigure the operating system?

Executing the reconfiguration procedures interactively or editing the initializa-
tion procedure is very easy.

SM4.17 How much human intervention is required during the reconfigure
procedure?

The reconfiguration process is entirely manual.

SM4.18 How easy is it to recover from error during the reconfigure procedure?

72 CMU/SEI-88-TR-21

Out of range values for system reconfiguration procedure parameters will
generate constraint errors. If the procedure was invoked interactively, the
user would simply return to the command window, edit the procedure
parameters, and run the procedure again. If the error is generated during
execution of the system initialization procedure, the system will complete
booting, but only one Rational terminal that is connected to a port whose
communications parameters are hardwired will be enabled. The initialization
procedure must then be corrected from the hardwired terminal and run to
enable the remaining terminals. This suggests that all changes to the system
initialization procedure should be tested by running the procedure when the
system is up. Editing the initialization procedure is as easy as any other
program development work on the Rational.

SM4.19 How well Is the reconfigure procedure documented?

Complete documentation is provided, including guidelines for scheduling
daemon clients, an overview of the system's resource-scheduling algorithms,
and detailed descriptions of all daemon and scheduler procedures and
parameters.

SM4.20 Do system resource (CPU time, disk space, etc.) quotas exist? If so, at
what level can they be set? (Individual user, user account group, only
all accounts)

CPU time and working set size quotas exist. Disk usage is allocated by
withholding jobs from running when the disk load becomes too high. The
parameters for the disk load algorithm can be set by the user. There is no
allocation of disk space. The CPU time and disk usage allocations are
system-wide only. Working set size can be set system-wide and for indi-
vidual jobs.

3.8. System Management Analysis

3.8.1. Functionality
Users of the R1000 computer buy a package that typically includes the R1000 computer, the
Rational Environment, software updates, and a Rational service contract. The service contract is
a separately priced item, which includes software updates. The R1000 and Rational Environment
are installed by Rational technicians. Therefore, users are not involved in system installation.
System management can supply only three account characteristics: the account name, initial

password, and enrollment in certain user groups. The functionality to modify and display these
few characteristics is provided to users with operator capability.

User work space management attributes and operations can be associated with an individual
account via the Rational commands, including key bindings, macro definitions, and session

switches. These are not considered system management attributes. However, a procedure
could be created that would provide a baseline of work space management attributes, as well as
an initial password and user group membership upon user account creation.

Although the R1000 does not allow tuning the system by adjusting system resource quotas for
individual users, system management utilities do allow tuning by setting parameters for the sys-

tem as a whole. These utilities are not covered by this experiment.

CMU/SEI-88-TR-21 73

The system can log sufficient resource usage accounting information to serve as a basis for a
billing system: There is no easy way to disable system accounting logging once it is enabled.
Comprehensive accounting information is available interactively. There are no documented pro-
gram interfaces for obtaining system accounting information except for cumulative CPU time for a
job. Procedures are provided to control system-wide parameters affecting system performance
both for CPU time, memory, and disk usage allocation and for scheduling of system daemon's
clients.

Rational Environment installations and upgrades are done entirely by Rational technicians as part
of the sales and maintenance contracts. Also, the Rational Response Center is available by
phone to answer any questions. Throughout the performance of the experiments, the Response
Center was prompt in providing guidance, admitting to problems, and providing usable
workarounds.

3.8.2. Performance
Rational technicians reserve a machine for over a half day to a day to perform installation of a
new release of the Rational Environment. Differences in installation time depend on whether the
user has optional environment components such as networking software or cross compilers.

The commands to create a user account group, create a new user account, add a user account to
a user group, disable logins for a user account, display account characteristics, modify account
characteristics, remove a user account from a user group, and delete a user account are highly
interactive. Most executed in an elapsed wall clock time of about one second.

The space required for creating a new user was 7473 bytes. If user access to the account is
revoked, no space is reclaimed by the system, as the user's home world still exists. However, if
the user's home world is deleted, then the space is reclaimed. Creating a user account group
caused a space consumption increase of 1 byte in the IMachine.Groups directory. Adding a user
to the user account group caused a space consumption increase of 2 bytes. Any other storage
costs due to these two operations could not be measured. The space used by IMachine.Groups
is reclaimed when a user account is removed from a user group.

The execution overhead of accounting logging and interactive resource usage display could not
be determined. System reboot takes approximately fifteen to twenty minutes (and is required to
close accounting log files). Interactive response to the system reconfiguration commands was
quick.

3.8.3. User Interface
The System Management Experiments use the Rational Environment interface. This interface
supports command recall, wildcards, command editing, command abbreviations, and parameter
prompting. In the Rational Environment, the user is always in the Rational editor, whose com-
mands for cursor movement, object selection, and deletion operate on directories, command
windows, text, and Ada objects. All commands in the Rational Environment are Ada sub-
programs. They may be invoked from within the editor by selecting the command in its home
directory and pressing the <Promot> key, by entering the subprogram name in a command win-

74 CMU/SEI-88-TR-21

dow (which provides a block within which subprograms be run), or by binding the subprogram to

a key on the Rational Terminal keyboard at logon. Procedures may be bound to the keyboard so
that they execute immediately or so that they prompt for parameters. A Prompt_For key over-

rides a key binding for immediate execution and causes the command bound to a key to appear
in a command window. A <Complt> key will generate a parameter list for a command whose

name has been entered in a command window and will also complete the spelling of a procedure

name if enough of the name is provided so that it is unambiguous. Many parameterless com-

mands act on objects in the Environment, such as directory entries or sections of text or Ada

objects that have been selected with the editor object selection commands.

The simple user account management activities provided by the Rational Environment can easily
be performed directly from a command window in any directory that has established a link with
the operator package. The only requirement of a user of most of the operator package com-
mands is that the user's account have operator capability.

3.8.4. System Interface
The commands for user account management are in complete accordance with the standard
Rational interface. The user account management commands are Ada procedures which are
invoked from a command window.

The Rational Environment lacks the ability to disable machine usage accounting without the inter-

vention of a Rational technician. According to Rational designers, the system overhead for log-

ging accounting information is so low that an attempt to measure it would disappear into the noise
generated by such factors as disk latency. Closing the current logging file requires rebooting the
system, which is a clumsy arrangement. Its contents may be copied to another file using the
Common.Write_File procedure. Operating system reconfiguration is performed completely in ac-

cordance with the standard Rational interface, which makes the reconfiguration process easy.

One problem concerning system interface was encountered across several of the experiments.
Since this section deals with the duties of a system administrator, it will be noted here. A random,
sporadic generation of input from an unused I/O port wasted 50 to 80 percent usage of the CPU.

Until this hardware problem was corrected, it caused a degradation in system response to many
of the commonly used window commands. Due to window manipulation commands often being

only one or two keystrokes, system interface degradation was immediately noticeable and very
frustrating. It would be the duty of the system administrator to recognize the problem and correct

it. With the help of a Rational Service Representative the bad I/O port was found, and once
corrected the system response improved dramatically.

CMU/SEI-88-TR-21 75

76 CMU/SEI-88-TR-21

4. Design and Development Experiment

4.1. Introduction
The Design and Development Experiment exercises the Environment support of detailed design,

code development, and translation. The Experiment consists of creating a program library and
using the Environment's editor to enter code seeded with errors. The Environment's capability to

detect the errors is exercised. A second program library, which will contain dependencies on the
first, is created; changes to the first are outlined, and required retranslation effort is observed.

The Rational Environment keeps the bodies of procedures declared as separate in the Ada object
in which their specification was declared, rather than in separate files. Aside from this, they are

treated independently of their parent unit. Once the bodies of subunits have been compiled, they
appear in directories and can be visited independently of their parent unit and can also be

promoted and demoted independently of their parent unit, provided that the state of the subunit
body is not higher than the state of its parent unit.

The incorporation of subunit bodies in the Ada unit on which they depend requires that the
Get_Row and Get_Col procedure bodies be created within the body of Matrix Management. To

conform as closely as possible to the existing script, the bodies of Get_Row and Get_Col are
entered into Matrix_Management in step 7 and coded in step 8.

The installed Ada objects in a library contain much of the semantic information in a library. The

division of library information between Ada objects and their enclosing context cannot be deter-
mined. Consequently, when the Rational Environment measures disk usage, it combines the
changes in size of the Ada object and the changes in size of the enclosing context into one figure
rather than separating the figures into library disk utilization and procedure disk utilization.

The Rational Environment requires that any compilation unit that depends upon another compi-

lation unit which is being edited also be demoted to source state. Compilation units in the source

state are not visible to other compilation units. Obsolete units are never visible to other units in
libraries. For this instantiation of the Design and Development Experiment, determining the
recompilation status of a library will be interpreted as meaning generating a listing of the state of
the Ada objects (source, installed, or coded) in a directory or world rather than determining which
units in a library are obsolete.

In the following experiment instantiation, experiment steps are numbered and substeps are let-

tered. Sections of substeps are numbered with lowercase Roman numerals. Any comments
concerning the experiment step in the context of the Rational Environment are in regular type with

braces ({}). The instantiation of the experiment is provided as a transcript of actual keystrokes.
Comments as to the correct context in which to type the indicated keys, and comments as to what

the keystroke will accomplish are indented, enclosed in braces ({ }) and printed in a different

typeface typeface. The required keystrokes are indented and printed in typeface typeface,
and are indicated either by the letter(s) on the key or by its keymap designation in angle brackets

(<>).

CMU/SEI-88-TR-21 77

4.2. Experiment

1. Set up experiment

a. Create directory named EXPJJB, in which the experiment will be per-
formed.

<Create Directory>
{A command window opens,
supply Exp_Lib as value
of parameter Name.}
(Name => "")
"EXP_LIB"
<Promot>

b. Create a subdirectory under the experimental directory, named ADAJJB, to
house Ada source code fragments that will be required throughout the ex-
periment.

{Move cursor to Exp_L±b.}
<Definition>
<Create World>
{A command window opens;
supply Ada_Lib as value
of parameter Name.}
(Name => "")
"Ada_LIB"
<Promot>
<Create World>
{Supply Ada_Lib_Spec_Errors
as value of parameter Name.}
(Name => "")
"Ada_LIB_SPEC_ERRQRS"
<Promot>
<Create World>
{Supply Ada_Lib_Body_Errors
as value of parameter Name.}
(Name => "")
"Ada_LIB_BODY_ERRORS"
<Promot>

c. Create, as text, the source code fragments and data files in ADA _LIB.
Appendix 5.A exhibits these files by filename.

{Objects to be entered are shown below sorted by library with the step in
which the object is used indicated. Also shown is the appendix section and
exhibit number from Evaluation of Ada Environments, Chapter 5. Multiple
libraries are used because the Rational directories function as program
libraries and allow only one compilation unit of a given name and type in a
directory.}

Step Appendix Exhibit

in Ada_LIb_Spec_Errors:
Matrix_Management spec

in Ada_Ub_Body_Errors:
Vec Main

3c

6b

5.1

5.A.7

1.2a

1.4a

78 CMU/SEI-88-TR-21

Matrix Management body 7a 5.B.3

In Ada Lib:
Vector_Management_Body 7b 5.B.18
Matrix Main 8a 5.B.5

{Note: Vector_Management Spec (Appendix 5.1, Exhibit 1.1a) will be en-
tered by hand, rather than copied from a library in step 3bi. Errors shown in
Vector_Management spec cannot be committed to disk, because commit-
ting the file causes syntactic completion.}

d. Develop a command named recordit to collect general experimental data.

{For this script the library creation, the file copy command Library.Copy and
Ada object promotion commands have been incorporated into procedures
that instrument them by measuring time and disk space utilization. These
instrumented procedures are then bound to the Rational keyboard. The
code for these procedures is listed in Appendix B.}

e. Develop a command named time to collect experimental timing data.

{Seel.d.}

2. Identify objects and operations.

The R1000 provides no support for graphical design methods.

3. Create package specification(s).

a. Create program library named PROJECTJJB. Measure the time it takes to
create program library. Measure disk utilization for newly created program
library.

<Create Directory>
{A command window opens;
supply Project_Lib as the
value for Directory_Name.}
(Directory_Name => "")
"Project_Lib"
<Promot>

b. Create package specification for a package named
VECTOR_MANAGEMENT.

i. Enter the package specification, which is seeded with errors exactly
as it is shown in Exhibit 1.1a.

CMU/SEI-88-TR-21 79

{Move cursor over PROJECT_LIB in
the EXP_LIB directory.}
<De finition>
{Write a message to the system message
window (which shows the compiler error
messages) to label the error messages
that will be generated by attempting to
compile the specification of
Vector_Management.}
<Create Command>
{A command window opens; enter:}
"message.send"
<Complt>
{Enter user id as value for parameter
Who. }
<Next Item>
{Enter specification name as value
for parameter Message.}
"vector_management_spec"
<Promot>
{Message appears in system message window,
open window for anonymous Ada object
creation.}
<Object> I
{Enter source into the Ada object
as shown, in Evaluation of Ada
Environments, Chapter 5, Section 5.A.1
Exhibit 1.1a.}

ii. Display and correct translation errors.

<Format>
{Correct errors shown by format
key.}

{Note that the format key adds the missing "is" and "of" and adds the
prompt "[expression]" for the missing "FLOAT."}

iii. Translate into program library PROJECT_LIB. Measure elapsed
and CPU times for translation.

{Compile to installed state.}
<Promot>
{Compile to coded state.}
<Promot>

iv. Compare corrected package specification to Exhibit 1.1b. (Note that
the file resides in AdaJJB. Correct any differences and retranslate if
necessary. Measure program library disk utilization attributable to
the package specification.

{Package specification is as shown in Evaluation of Ada
Environments, Chapter 5, Section 5.A.2 Exhibit 1.1b.}

c. Create package specification for a package named
MATRIX_MANAGEMENT.

i. Enter in the package specification, which is seeded with errors, ex-
actly as it is shown in Exhibit 1.2a.

80 CMU/SEI-88-TR-21

{Close Vector_Management spec window
and move cursor back into PROJECT_LIB
world.}
<Object> G
{Move cursor to Project_Lib command
window and make notation in system
message window that any following
compiler errors refer to
Matrix_Management_Spec.}
<Window> <Down Arrow>
{Make message command editable.}
<Item Off>
{Change Vector_Management_Spec to
Matrix_Management_Spec and execute
message command.}
<Promot>

{Copy Matrix Management spec with errors
to Project_Lib in command window of
Project_Lib.}
Library.Copy
<Complt>
{Supply pathname to Matrix Management
spec and Matrix Management as value
for from parameter.}
" />,Ada_Lib_Spec_Errors .Matrix_Management"
<Promot>
{Move cursor to directory entry
for Matrix Management spec and select it.}
<Object> <Left Arrow>
{Open a window to edit Matrix_Management
spec.}
<Kdit>

ii. Display and correct translation errors.

{Use format key to find syntax and local semantics errors, seman-
ticize key to find semantic errors, next item key to move between
errors, and explain item key to obtain explanation of syntax and
semantics errors. Note that missing second <> for the array defini-
tion is inserted by pressing the format key.}

iii. Translate into program library PROJECT_LIB. Measure elapsed
and CPU times for translation.

{Compile to installed state.}
<Promot>
{Compile to coded state.}
<Promot>

iv. Compare corrected package specification to Exhibit 1.2b. Correct
any differences and retranslate if necessary. Measure program
library disk utilization. Measure disk utilization attributable to the
package specification.

{Package specification is as shown in Evaluation of Ada
Environments, Chapter 5, Section 5.A.4 Exhibit 1.2b.}

CMU/SEI-88-TR-21 81

4. Design subprogram control flows, identify subprogram interdependencies, and de-
fine subprogram specifications local to each package body.

The Rational Environment provides no graphical design aids.

5. Create package body for VECTOR_MANAGEMENT.

a. Generate package body of VECTOR_MANAGEMENT using a null body
generator if available. Otherwise, use vector_body_null in AdaJJB.

{Cursor will be in spec of
Matrix Management at end of
step 3. Close Matrix_Management
spec window and move cursor back
to Project_Lib.}
<Object> G
<Window <Down Arrow>
{Retrieve command window with
message.send, in order to
note in system message window
that any following compilation
errors apply to the body of
Vector Management.}
<Object> U
{Change Matrix_Management_Spec to
Vector_Management_Body and execute
message command.}
<Promot>
{Move cursor to Vector_Management'Spec
in the Project_Lib directory window, and
select it.}
<Object> <Left Arrow>
<Create Body>
{Note: A window opens on skeleton of
vector_Management'Body.}

(From this point on, assume that a message indicating what unit is being
compiled will be sent to the message window before every compilation of a
unit containing errors.}

b. Modify the pairwise vector multiplication function.

i. Enter the function body, which is seeded with errors, exactly as it is
shown in Exhibit 1.3a.

{The missing "is" in line 2 of the code in Evaluation of Ada
Environments, Chapter 5, Section 5.A.5 Exhibit 1.3a is prevented by
use of the null body generator. Enter remaining code as shown.}

ii. Display and correct translation errors.

{Use format key to find syntax and local semantics errors, seman-
ticize key to find semantic errors, next item key to move between
errors, and explain item key to obtain explanation of syntax and
semantics errors.}

iii. Translate into program library PROJECTJJB.

82 CMU/SEI-88-TR-21

{Compile to installed state.}
<Promot>
{Compile to coded state.}
<Promot>

iv. Compare corrected package body to Exhibit 1.3b. Correct any dif-
ferences and retranslate if necessary. Measure program library disk
utilization. Measure disk utilization attributable to the package body.

{Package specification is as shown in Evaluation of Ada
Environments, Chapter 5, Section 5.A.6 Exhibit 1.3b.}

6. Create a main program named VEC_MAIN in a separate program library to drive
pairwise vector multiplication.

a. Create a program library named TEST_LIB from within the directory
PROJECT_LIB that will contain compilation units that have dependencies
upon units in PROJECTJJB.

{Cursor is in body of Vector Management
at end of step 5; close Vector Management'Body
window and move cursor to Project_Lib window.}
<Object> G
<Create Directory>
{Note that a unit compiled in a
directory within a world has as a
context all other units that have been
compiled in the world or in a directory
within the world. Supply Test_Lib as
the value for parameter Name.}
(Name => "")
"Test_Lib"
<Promot>

b. Create a test main program named VEC_MAIN that will be translated into
TEST_LIB.

i. Create the procedure VEC_MAIN, which is seeded with errors, by
copying it from Ada_LIB. Refer to Evaluation of Ada Environments,
Chapter 5, Section 5.A.7, Exhibit 1.4a.

CMU/SEI-88-TR-21 83

<Open Test_Lib window by moving the
cursor over Test_Lib in Project_Lib
directory.}
<Definition>
{Copy Vec Main with errors into
Test_Lib.}
<Create Command>
Library.Copy
<Complt>
{Supply pathname to Vec_Main and
Vec Main as value for parameter
From.}
(From => ""...)
"AAAda_Lib_Body_Errors.Vec_Main"
<Promot>
{Move cursor over Vec_Main
directory entry and select it.}
<Object> <Le£t Arrow>
{Open a window containing Vec_Main
to edit.}
<Edit>

ii. Display and correct translation errors. Display a cross-reference
map.

{Use format key to find syntax and local semantics errors, seman-
ticize key to find semantic errors, next item key to move between
errors, and explain item key to obtain explanation of syntax and
semantics errors.}

{The Rational cross reference utility requires that objects be in the
installed state or, if in the source state, that they have been success-
fully semanticized immediately prior to use of the cross reference
utility. Therefore, Vec_Main must be successfully semanticized be-
fore the Xref calls are made.}

84 CMU/SEI-88-TR-21

{Move cursor to Test_Lib window.}
<Enclosing>
<Create Command>
{Command window opens showing
previous command; enter:}
"Xref.Uses"
<Complt>
(List_Of_Names => "<IMAGE>",
Visible_Declarations_Only

=> True, ...)
{Supply Vec_Main as the value for
parameter List_Of_Hames.}
"Vec_Main"
{Go through a list of Boolean switches
turning on the switches for information
that is not needed in the Xref
listing.}
Numeric 7 <Next_Item>
"true" {report use of constants}
Numeric 3 <Next Item>
"true" {report use of labels}
<Next Ites»
"true" {report use of packages}
Numeric 5 <Next ltem>
"true" {report use of variables}
Numeric 3 <Next Item>
{Save the Xref results.}
"Vec_Main_Xref"
<Promot>

iii. Translate into program library TESTJJB.

{Move cursor to window containing Vec_Main
and compile it to installed state.}
<Promot>
{Compile to coded state.}
<Promot>

iv. Compare corrected package specification to Exhibit 1.4b. Correct
any differences and retranslate if necessary. Measure program
library disk utilization. Measure disk utilization attributable to the
procedure.

{Package specification is as shown in Evaluation of Ada
Environments, Chapter 5, Section 5.A.8 Exhibit 1.4b.}

c. Create executable module. Execute. Halt execution. Resume execution.
Time module creation. Observe execution error message(s).

{Rational links object code contained in Ada objects into an executable
module either at runtime or, if the pragma Main is used in the main program,
at compilation time. Creation of an executable module is therefore not an
observable, measurable step.}

CMU/SEI-88-TR-21 85

{Move cursor to Test_Lib window.}
<Enclosing>
{Move cursor over Vec_Main and
select it.}
<Object> <Left Arrow>
{Execute Vec_Main.}
<Promot>
{Move job to background mode.}
<Control> G
{Halt execution of job.}
<Job Disable>
{Resume execution of job.}
<Job Enable>

{Note the job enable and job disable keys stop all jobs. These keys can
prompt for a job number so that a specific job is disabled, but Vec_Main
does not run long enough to go through the mechanics of disabling a single
job. If Vec_Main were run under the debugger, stopping and starting it
would be easy. Running under the debugger does not require recompila-
tion, just use of the meta key in combination with the promote key (<Meta>
<Promot>).}

d. Determine the cause of the execution error by first browsing VEC_MAIN
and noticing that the variable v3 is of TYPE VECTOR(1..4). Examine the
statement invoking pairwise vector multiplication: product3 := v3*u3. Then
browse the pairwise vector multiplication function and notice that there is no
check for compatible dimensions.

{Move cursor to Vec_Main'Body
in Test_Lib directory window.}
<Definition>
{Move to Test_Lib window.}
<Enclosing Object>
{Move to Project_Lib window.}
<Enclosing Object>
{Move cursor over VectorJManagement
body.}
<Definition>

7. Create package body for MATRIX_MANAGEMENT.

a. Create package body for MATRIX_MANAGEMENT by copying existing ver-
sion from matrix_body_errors in Ada_LIB. Correct all errors except for the
exception declaration, which will be corrected in the next step.

86 CMU/SEI-88-TR-21

{Cursor is in window containing
Vector_Management body after
step 6; move to Project_Lib window.}
<Enclosing Object>
{Turn off selection of Vector_Management.}
<Item Off>
<Create Command>
{Cursor moves to command window containing
last command issued with this window; change
command to:}
"Library.Copy"
<Complt>
(From => "<REGION>" ...);
{Supply parameter value for parameter
From. }
"AAda_Lib_Body_Errors.Matrix_Management"
<Promot>
{Move cursor to Matrix Management body
in Project_Lib directory and select it.}
<Object> <Left Arrow>
{Open window to edit Matrix_Management body.}
<Idit>
{Use format key to find syntax errors
and local semantics errors, semanticize
key to find semantic errors, next item
key to move between errors, and
explain item key to obtain explanation
of syntax and semantics errors. Commit
incorrect Matrix_Management body to disk.}
<Enter>

b. Substitute for the VECTOR_MANAGEMENT package body a revised ver-
sion copied from vector_body_excptn in AdaJJB. This version contains a
non-null INNER_PROD function and a test for incompatible dimensions in
the pairwise vector multiplication function. Add "Dimension_Error :
exception;" to the package specification and retranslate.

CMU/SEI-88-TR-21 87

{At end of step a, the cursor is
in Matrix_Management'body; move cursor
to Project_Lib directory.}
<Enclosing Object>
{Turn off selection of Matrix_Management body.}
<Item Off>
<Create Command>
{Cursor moves to command window; replace
previous command:}
"Library.Copy"
<Complt>
(From => "<OTRSOR>"...);
{Supply value for parameter From:}
"AAda_lib.vector_management'body"
<Promot>

{Alter the spec of Vector_Management.}
{Move cursor to Vector_Management'Spec
in Froject_Lib directory and select it.}
<Object> <Left Arrow>
{Demote Vector_Management'Spec to
installed state.}
<Install Unit>
{Open window to incrementally edit
Vector_Management'Spec.}
<Definition>
{Move cursor into declarative region
of Spec. Open edit window with
cursor at the declaration prompt.}
<Object> I
{Enter the declaration of the
Dimension_Error exception and format
to fit in Vector__Management'Spec.}
<Format>
{Add declaration to rest of Spec.}
<Promot>
{Return Spec to coded state.}
<Promot>
{Move cursor to Project_Lib window.}
<Enclosing Object>

{Code the new Vector_Management body;}
move cursor to Vector_Management body
and select it.}
<Object> <Left Arrow>
{Promote Vector Management body to coded
state.}
<Code Unit>

c. Create function body for GET_ROW and null body for GET_COL by copying
from GET_ROW in Ada_LIB, but do not translate until so directed in a sub-
sequent step. Retranslate MATRIX_MANAGEMENT package body into
PROJECTJJB.

{The Rational Environment requires that separate unit bodies be part of the
Ada object in which their specifications are declared. This can be achieved

88 CMU/SEI-88-TR-21

in at least two other ways besides the method shown in the script; the pro-
cedures can be compiled independently and copied into the
Matrix_Management Ada Object by using the Library.Copy procedure, or
they can be copied from their own window to the Matrix Management win-
dow with the "<Object> C" key combination. In either case, the separate
declaration in Matrix_Management is automatically generated as is the sep-
arate body syntax.}

{Move cursor to Matrix_Management
body in Project_Lib directory.}
<Definition>
{Move cursor to Get_Row function
and select it.}
<Object> <Left Axrow>
<Edit>
{Enter source as shown and commit
Get_Row body to disk.}
<Enter>
{Return to Matrix_Management body.}
<Object> G
{Select Get_Col.}
<Object> <Down Arrow>
<Edit>
{Enter source as shown and commit
Get_Col body to disk.}
<Enter>
{Return to Matrix Management body.}
<Object> G
{Compile Matrix Management body.}
<Code Unit>
{Return to Project_Lib directory.}
<Object> G

8. Create a main procedure named MAT_MAIN to drive matrix-vector multiplication.

a. Create main procedure by copying Matrix_Main from ADAJJB. Translate
main procedure into program library TESTJJB. List the compilation unit
names and types in program library TESTJJB and PROJECTJJB. List
package and subprogram interdependencies. Determine the completeness
and recompilation status of both program libraries.

CMU/SEI-88-TR-21 89

{At end of step 7, the cursor is in the
Project_Lib directory. Move the
cursor over Test_Lib and copy
Mat_Main from Ada_Lib.}
<D efinit ion>
<Create_Command>
"Library.Copy"
<Complt>
(From => "<REGION>" ...);
{Supply value for parameter From: }
" /VAAda_lib .mat_main' body"
<Promot>
{Move cursor to Mat_Main'Body, and
select it}
<Object> <Left Arrow>
{Promote Mat_Main to the coded state.}
<Code Unit>

{List compilation units' type and status
in Test_Lib.}
<Create Command>
"Ada_List"
<Complt>
"@'c(Ada)"
<Promot>

{Generate Xref listing for Test_Lib.}
<Create Command>
{Replace previous command in command window:}
"Xref.Uses"
<Complt>
(List_Of_Names => "<IMAGE>" ...)
"@"
Numeric 11
<Next Xtem>
"true"
<Promot>

{Move cursor to Project_Lib directory.}
<Enclosing Object>
{List compilation units' type and status
in Project_Lib.}
<Create Command>
"Ada_List"
<Complt>
"c(Ada)"
<Promot>

90 CMU/SEI-88-TR-21

(Generate Xref listing for Project_Lib.}
<Create Command>
"Xref.Uses"
<Complt>
([List_Of_Names => "<IMAGE>" ...)
"@"
Numeric 11
<Next Item>
"true"
<Promot>

b. Create executable module. Execute. Time how long it takes to create mod-
ule.

{Since the Rational Environment links at runtime, the only applicable part of
this step is Execute.}

{Move cursor to Test_Lib in Project_Lib
directory.}
<Definition>
{Move cursor to Mat_Main in the
Test_Lib directory and select it.}
<Object> <Left Arrow>
<Promot>
{Note error message that Get_Row
and Get_Col have not been installed.
Move cursor to Project_Lib directory.}
<Enclosing Object>
{Move cursor to Get_Row and
select it.}
<Object> <Left Arrow>
<Code Unit>
{Move cursor to Get_Col and
select it.}
<Object> <Left Arrow>
<Code Unit>
{Move cursor to Test_Lib
in Project_Lib directory.}
<Definition>
{Move cursor to Mat_Main in the
Test_Lib directory and select it.}
<Object> <Left Arrow>
<Promot>

9. Modify package specifications and bodies and examine system retranslation be-
havior using MAT_MAIN as a main procedure (Figure 5-6).

a. Change a package specification by removing a function specification that no
other package depends upon: Delete pairwise vector multiplication specifi-
cation and store temporarily in a separate location for subsequent reuse.
Translate. Create an executable module. Observe system retranslation
behavior.

CMU/SEI-88-TR-21 91

{Cursor is in Test_Lib after step 8;
move cursor to Project_Lib window.}
<Enclosing Object>
{Create Temp Storage for function
to be deleted.}
<Object> I
{Return cursor to Project_Lib window.)
<Enclosing Object>
{Move cursor to Vector Management'Spec.}
<Definition>
{Demote Spec to installed state.}
<Install Unit>
{Move cursor to pairwise vector
multiplication function spec and
select it.}
<Object> <Left Arrow>
{Move cursor to window for
anonymous Ada object and copy
function declaration.}
<Region> C
{Return cursor to Vector_Management'Spec
window.}
{Select function again.}
<Object> D
{Note a window opens showing objects made
obsolete by removal of pairwise multiplication
(VecJMain body and Vector_Management body).
Move cursor over Vec_Main'Body and select it.}
<Object> <Left Arrow>
{Demote Vec_Main'Body to source.}
<Source Unit>
{Move cursor over Vector_Management'Body and
select it.}
<Object> <Left Arrow>
{Demote Vector_Management'body to source.}
<Source 0nit>
{Move cursor back to Vector_Management'Spec
window and again select the function.}
<Object> D
{Compile Vector Management'Spec to coded state.}
<Promot>
{Move cursor to Test_Lib Window and
select Mat_Main'Body.}
<Object, Left Arrow>
{Note: A simple <Promot> keystroke could be
used below, but <Code (All Worlds)> generates
a log and <Promot> does not.}
<Code (All Worlds)>

b. Change package body by changing an algorithm in a subprogram body:
Change INNER_PROD body so that it no longer uses pairwise vector multi-
plication. Translate into PROJECTJJB. Create executable module. Ob-
serve system retranslation behavior.

92 CMU/SEI-88-TR-21

{Move cursor back to Project_Lib window.}
<Enclosing Object>
{Move cursor to Vector_Management body.}
<Definition>
{Make Vector Management'Body editable.}
<Install Unit>
{Move cursor to inner_product function
and select it.}
<Object> <Le£t Arrow>
<Edit>
{Note: inner_product body moves to an edit
window and demoted to source. Change inner
product and reinstall it into
Vector_Management'Body.}
<Promot>
{Compile Vector_Management body to coded.}
<Promot>
{Return to Project_liib window.}
<Enclosing Object>
{Move cursor to Test_Lib in Project_lib
window.}
<Definition>
{Move cursor to Mat_Main body.}
<Object> <Left Arrow>
<Code (All Worlds)>

c. Change package body by deleting an unused subprogram body: Delete
pairwise vector multiplication function body and store temporarily in a sepa-
rate location. Translate into PROJECTJJB. Create executable module.
Observe system retranslation behavior.

CMU/SEI-88-TR-21 93

{At the end of step 9b the cursor
is in the Test_Lib window; return
to Project_Lib window.}
<Enclosing Object>
{Create Ada object to store function body.}
<Object, I>
{Return to Project_Lib directory.}
<Enclosing Object>
{Move cursor to Vector_Management body.}
<Definition>
{Make Vector_Management body
incrementally editable.}
<Install Unit>
{Move cursor over pairwise vector
multiplication function and select it.}
<Object> <Left Arrow>
{Move cursor to anonymous object window
and copy function to it.}
<Region> C
{Move cursor back to
Vector_Management'Body window. Move
cursor over pairwise vector multiplication
function and select it.}
<Object> <Left Arrow>
{Delete function body.}
<Object> D
{Return Vector_Management body to coded.}
<Promot>
{Move cursor to Project_Lib window.}
<Enclosing Object>
{Move cursor over Test_Lib window.}
<Definition>
{Move cursor over Mat_Main body.}
<Object. Left Arrow> {Mat_Main is selected.}
<Compilation Make>

d. Change package body by adding a subprogram body: Add back pairwise
vector multiplication function body. Translate into PROJECTJJB. Create
executable module. Observe system retranslation behavior.

94 CMU/SEI-88-TR-21

{At the end of step 9c the cursor
is in the Test_Lib window; return
cursor to Project_Lib window.}
<Enclosing Object>
{Move cursor to object
containing function body.}
<De finit ion>
{Return to Project_Lib directory.}
<Enclosing Object>
{Move cursor to Vector_Management'Body.}
<De f inition>
{Make Vector_Management body incrementally
editable.}
<Install Unit>
{Open edit window for function body.}
<Object> I
{Move cursor to window holding function and
select function.}
<Object> <Left Arrow>
{Move cursor to Vector_Management insertion
window and copy function
to it.}
<Region> C
{Install function body.}
<Promot>
{Code Vector_Managexnent body. }
<Promot>
{Move cursor to Project_Lib window.}
<Enclosing Object>
{Move cursor to Test_Lib window.}
<Definition>
{Move cursor to Mat_Main body and
select it.}
<Object> <Left Arrow>
<Code (All Worlds)>

e. Change a package specification by adding a subprogram specification: Add
back pairwise vector multiplication function specification. Translate into
PROJECTJJB. Create executable module. Observe system retranslation
behavior.

CMU/SEI-68-TR-21 95

{At the end of step 9d the cursor is
in the Test_Lib window; return cursor
to Project_Lib window.}
<Enclosing Object>
{Move cursor to object containing
function spec.}
<Definition>
{Return to Project_Lib directory.}
<Enclosing Object>
{Move cursor to Vector_Management'Spec.}
<De finit ion>
{Make Vector_Management'Spec
incrementally editable.}
<Install Unit>
{Open window to edit function spec.}
<Object> I
{Move cursor to window holding
function spec and select function.}
<Object> <Left Arrow>
{Move cursor to Vector_Management'Spec
declaration insertion window and copy
function to it.}
<Region> C
<Promot>
{Note: window showing units that would
be made obsolete by promotion opens
(Mat Main'Body). Cursor moves to this
window. Move cursor over Mat Main'Body
and select it.}
<Object> <Left Arrow>
{Demote Mat_Main to source state.}
<Source Unit>
{Move cursor back to Vector_Management
insertion window.}
{Install function spec.}
<Promot>
{Code Vector_Management'Spec.}
<Promot>
{Move cursor to Project_Lib window.}
<Enclosing Object>
{Move cursor to Test_Lib window.}
<Definition>
{Move cursor to Mat_Main'Body and
select it.}
<Object> <Left Arrow>
<Code (All Worlds)>

f. Change package body by adding comments: Add comments to package
body of VECTOR_MANAGEMENT. Translate into PROJECTJJB. Create
executable module. Observe system retranslation behavior.

{Since comments can be added to a coded body, no retranslation is
required.}

96 CMU/SEI-88-TR-21

{The cursor is in the Test Lib window
at the end of step 9e; move cursor to
Vector Management'Body.}
<De£inition>
{Move cursor to where comment is to
be inserted and open an insertion
window.}
<Object> I
{Enter comment.}
<Promot>
{Note: comment is placed into body
and insertion window closes. More comments
may be inserted by following the same steps.}

g. Add comments to package specification of VECTOR_MANAGEMENT.
Translate into PROJECTJJB. Create executable module. Observe system
retranslation behavior.

{Since comments can be added to a coded specification, no retranslation is
required.}

{The cursor is in the
Vector_Management'Body window
at the end of step 9£; move cursor to
Test_Lib window.}
<Enclos ing>
{Move cursor to Vector_Management'Spec.}
<Definition>
{Move cursor to where comment is to
be inserted and open an insertion
window.}
<Object> I
{Enter comment.}
<Promot>
{Note: comment is placed into body
and insertion window closes. More comments
may be inserted by following the same steps.}

4.3. Functionality Checklist
Activity Step # Supported Observations

(Y/N)

Detailed Design
Create system skeleton 3 No

Code Development and Translation
Create program library 3 Yes

Create prog. lib. interdep 6 Yes
Develop package specs

create package spec 3 Yes A private part generator is provided.
Editor is syntax directed.

modify package spec 3 Yes
delete package spec gen Yes

CMU/SEI-88-TR-21 97

Develop package bodies
create package bodies 5,7

A null body generator Is provided

modify package bodies 5,7
delete package bodies gen

Query and manip. prog, lib.
list unit names 8
list unit types 8
list prog. lib. interdep gen
list package interdep 8

list subprog. interdep 8
determine completeness 8

determine recomp 8
remove unit gen

clear prog, lib gen

Translate code
trans, into a prog, lib 3,5,7
create x-ref. map 6
display error messages 3,5,6
list subprog. interdep 8
pretty print source code gen

Create executable image 6,8

Execute code
halt/resume/terminate execution 6
trace execution path 6
clock CPU time by subprog gen

Yes

Yes
Yes

Yes
Yes
Yes
Yes

Yes
Yes

Yes
Yes

Yes

Yes
Yes
Yes
Yes
Yes

N/A

Yes
Yes
No

Links.Display command

Via Xref command
Via Compilation.Make with wildcard or
<Compile (All Worlds)> key.
Compilation.Make, effort only switch on.
Bodies must be removed before specs.
Specs cannot be removed until all
dependent units have been demoted
to source.
Compilation.Delete with wildcard,
and Library.Expunge or
Compilation.Destroy.

R1000 links at run time. Pragma
Main forces prelinkage.

See Unit Testing and
Debugging Experiment, Chapter 5.

4.4. Experiment Answers

Question
DD1

DD2

Response
Describe the mechanics of Importing data from the OS.

The Rational Environment is the host operating system for the R1000 com-
puter. Data is made available to programs and command procedures
through "operating system" routines. All of these routines are callable Ada
functions or subprograms.

What tools are provided by the environment to monitor/query CPU and
elapsed time for a tool, memory utilization for a tool, storage require-
ments for files, directories, and program libraries?

The package ITools.SystemJJtilities provides a function Cpu that returns the
elapsed CPU time for a specified or current job. The execution of a tool can
be the specified job. The memory utilization of a tool can be monitored by

98 CMU/SEI-88-TR-21

the procedures What.Users and What.Jobs which return information about
processes in the system. The storage requirements for a tool are displayed
using the library listing. Storage requirements for objects (files, directories,
and program libraries) are found either through the library list command or
the package !Tools.Directory_Tools.Statistics function Object Size The
library listing command also provides date modified, last user to modify, size
and class of objects, and status of Ada objects (archived, source, installed, or
coded.)

DD3 Describe the extent to which user interface customization is possible,
including support for user-defined command procedures, command
aliases, and key bindings.

All operations in the R1000 Environment are performed by Ada subprograms,
which can be bound to a key or executed from a command window. All the
procedures that constitute the R1000 Environment can be incorporated in
user-written procedures, which can be executed from command windows or
bound to keys. Since Ada procedures can be renamed, aliases can be pro-
vided for any Environment command or user-defined procedure.

The R1000 terminal provides twenty function keys and three modifier keys
(Shift, Control, and Meta) for a total of 160 key combinations available for
binding. Of these, 96 are bound to common operations in the Environment
and 64 are available to be bound to user-created procedures or to other
procedures in the Environment. Since Rational provides a keyboard template
that indicates which procedure is bound to which key combination, the mul-
tiplicity of key combinations is easily mastered in practice. The keyboard
template also provides space for recording any user-defined key bindings.
Default key bindings include debugger operation; directory traversal and list-
ing; help; promotion and demotion of Ada objects; creation of directories,
worlds, and text files; browsing commands; job management; and system
queries. The program that binds procedures to a key can specify whether the
procedure will execute immediately or appear in a command window with
prompts for the procedural parameters provided. In this experiment user-
written procedures that were used to collect size and timing statistics were
bound to the keyboard.

Command windows provide a block within which any procedure visible in the
current default context can execute. Command windows use a standard con-
text clause that makes all common procedures for operating the Environment
visible. Users can edit the context clause of a command window to make any
subprogram they want visible. Procedures can be created (and bound to
keys) that will create a customized command window. When a procedure
name has been typed into a command window, a named parameter associ-
ation for the procedure can be generated with the key Complt. Associated
with each parameter is a prompt. If a parameter has defaults then the
defaults appear in the prompt. If there is no default for the parameter, the
type or subtype indication appears in the prompt. The user can move from
prompt to prompt using the next item key.

A user indicates at login the name of the current session. Associated with a
session name is an extensive set of switches for modifying the operating
characteristics of the Environment. Among other things, switches control the
layout of the screen and the information recorded in system log files. Users
can maintain as many sessions and associated sets of switches as they de-
sire.

When a user logs in, the system looks for an Ada program called login in the

CMU/SEI-88-TR-21 99

user's home directory and executes it. Login can perform any additional
customization of the Environment not provided by session switches such as
selecting a directory in which to start work. Another procedure,
Rational_Commands in the user's home directory will perform any key bind-
ings the user requires that are global to all sessions. The procedure login will
always be invoked upon a user login, while Rational_Commands will only be
invoked if the user is logging in from a Rational Terminal. Separating key
binding commands from the login procedure prevents the misapplication of
bindings to an inappropriate terminal. Templates to construct
Rational_Commands and other Environment-supported terminals can be
found in !Machine.Editor_Data.

DD4 Describe the mechanics of using the environment to define objects and
operations during the detailed design process.

The Rational Environment provides no support for graphical design.

DD5 Describe the mechanics of creating a program library.

In the Rational Environment any directory or world can serve as a program
library. Directories or worlds are created by the procedures Create_Directory
and Create_World in package ICommands.Library. The procedures are
bound to function keys <Create Directory> and <Create World>. Directories
or worlds are easily created by pressing these keys and then typing the name
of the directory or world in response to the prompt appearing in the command
window.

DD6 What are the CPU and clock times for creating a program library?

CPU Time: 0.70 seconds. Wall Clock Time: 1.73 seconds

DD7 What are the space utilization ramifications of creating a program
library?

Directory creation consumed 7426 bytes.

DD8 How easy/difficult is It to create a program library?

Very easy; the creation requires a single keystroke followed by typing the
name of the library in response to a prompt, followed by the <Promot> key.

DD9 Describe the mechanics of entering Ada source code: package specifi-
cations, package bodies, subunlts, and subprograms.

The R1000 does not maintain separate files for source code, object code,
and executable images; it maintains one Ada object, which may be in one of
four states, archived, source, installed or coded. Initial entry of a unit using
the Ada Object Editor creates an image in source state. The Ada unit can be
demoted to archived state, which is much more compact than the source
state. In archived state, the unit need not be syntactically or semantically
correct, and cannot be edited. The unit may be promoted back to source
state. Units in the source state can be freely edited. Installed units are
syntactically and semantically correct and are visible to other units. Only
those portions of installed units on which there are no dependencies can be
edited. Declarations and statements may be freely added to installed units.
Coded units have had machine code generated. An Ada unit in the coded
state cannot be edited except for the addition, deletion, and modification of
comments; it must first be demoted to the installed or source state.

The R1000 editor can create either Ada objects or text. What the editor
creates is determined by the method of invoking it. To create text, the editor
is invoked by pressing the create text key and typing the name of the text file

100 CMU/SEI-88-TR-21

desired in response to the prompt generated by the keystroke. The name of
the text file appears in the directory listing and a window into which text may
be entered is opened. To create an Ada object, the user presses the object
key followed by "I" or "i" for insert. This causes a window into which the
object may be typed to be opened. When the object is promoted to the
installed state for the first time, the name of the compilation unit appears in
the directory listing. Prior to the first promotion the object is anonymous
(does not appear in directory listing) or appears with a system-generated
name if certain operations such as committing the object to disk are per-
formed. Subunits cannot be created as separate Ada objects. They are
generated either by entering a procedure body in line, selecting the proce-
dure with the object select keys and entering the Make_Separate command
in a command window attached to the object being edited, or by selecting a
subunit declaration and pressing the edit key, which creates a window con-
taining a skeleton of the subunit. Subunits can be brought in line with the
Makejnline command.

A bug exists in the editor whereby complex editing operations make it fail to
recognize a legal Ada statement. This bug was bypassed by deleting small
sections of source and re-entering them. The observed frequency of the
editor problem decreased from the GammaO and Gamma 1 Releases of the
Rational Environment. The problem was observed only once in conducting
the experiment using the Delta Release. The power of the editor outweighs
this problem.

Entering an Ada object is easy and efficient once the R1000 editor is mas-
tered. Since the editor is highly sensitive to environment, its capabilities are
more fully described in the answer to DD10.

DD10 Is the editor sensitive to the environment?

The Rational Environment is controlled either through keys to which environ-
ment procedures are bound or through command windows. Since the editor
is used for editing Ada objects, text, and command windows, it is the inter-
face to the Rational Environment; a user never leaves the editor. Even when
a user is supplying input to a user-developed Ada program through a window
generated by TextJO, the editor functions are available. A user can, for
example, use editor functions to copy part of a window generated by TextJO
into a request for input generated by TextJO.

The Ada Object Editor offers syntactic and semantic completion of constructs
and interactive syntax and semantics checking. The syntax-sensitive fea-
tures and local semantics are accessed through the format key, and the
semantics-sensitive features are accessed through the complete and seman-
ticize keys.

When the format key is pressed to complete the syntax of an Ada construct,
the editor prompts for missing elements. For example, if the programmer
types "procedure Foo is" and then presses the format key, the editor
responds by generating the following completion:

procedure Foo is
begin

[statement]
end Foo;

The cursor is positioned on the prompt "[statement]." The programmer can
move between prompts with the next item and previous item keys. Prompts
disappear when the programmer types on them. The syntactic completion
capability of the editor allows a programmer to prevent many syntax errors by

CMU/SEI-88-TR-21 101

having the editor format Ada constructs. The format key will also correct
some syntax errors of omission by performing syntactic completion.

The editor knows all the semantic information available in any library. The
editor uses this information to offer semantic completion of subprogram calls.
The user enters the name of a subprogram in an Ada object and selects it
with the object select keys. When the complete key is pressed, the editor
generates a named parameter association for the subprogram, with prompts
for the actual values giving the type of the expression required. If a
parameter has a default value then this is supplied in the named association
instead of a prompt. When the complete key is used to generate named
parameter associations, code containing a semantic error will be generated if
all of the following conditions are true:

1. The procedure being completed is from a package in the with
clause of the unit being edited.

2. There is no use clause for the package.

3. The parameter has as a default value of a type declared in the
package in the with clause.

4. The default value is not written using the dot notation to include
the package name.

In these circumstances, the default copied into the parameter association will
be undefined.

In addition to syntactic and semantic completion, the editor provides inter-
active syntax and semantics error correction with the format and semanticize
keys respectively. When syntax or semantics errors are found, they are un-
derlined. The user can move between errors discovered using next item and
previous item keys. Explanations of each error are available by pressing the
explain item key. By performing syntax and semantics checks after every
statement or small group of statements, a programmer can be assured that
when the last line of a program has been entered and checked, the entire
program is completely correct—both syntactically and semantically.

DD11 Is the editor an OS editor or is it specific to the environment?

The editor is specific to the Rational Environment and the Ada language.

DD12 Describe the mechanics of translating a compilation unit Into a speci-
fied program library.

A program library is either a directory or a world. An Ada object will be
compiled into the library in which it was inserted. The procedure for inserting
an Ada object into a library is described in DD9. The Rational system divides
compilation into two separate stages:

1. The creation of the DIANA tree that represents a syntactically
and semantically correct Ada program.

2. Code generation.

The DIANA tree is created and incrementally checked for syntactic and
semantic correctness in the editor. In the source state the DIANA tree can be
freely edited. In the installed state elements can be added to the tree, and
elements on which nothing is dependent can be changed or deleted. In the
coded state the DIANA tree cannot be edited except for its comment nodes.
While editing, each time the format key is pressed, the syntax of new text
entered is checked. Each time the semanticize key is pressed the entire unit

102 CMU/SEI-88-TR-21

is checked for semantic correctness. At any point when the DIANA tree is
syntactically and semantically correct, the compilation unit can be made
visible in the program library by promoting it to either the installed or coded
state. A correct DIANA tree in the coded state may be incomplete in the
sense that its image still contains prompts indicating incomplete Ada con-
structs. Programs containing incomplete Ada constructs will execute up to
the time that a call is made to an incomplete construct, at which time the
system raises Program_Error.

To perform promotion either the unit name is highlighted in a directory listing
or the cursor is placed in an image of the Ada object. The user then has the
following alternatives:

1. Press the promote key, which moves object up one state (from
source to installed or installed to coded).

2. Press the install key, which moves the object to the installed
state (from either the source or coded state).

3. Press the code key, which moves the object to the coded state
(from the source or installed state).

The R1000 also provides procedures for converting text files into Ada ob-
jects. The primary use of these procedures is not program development but
rather importing Ada programs from other computers, such as when running
the Ada Compiler Validation Suite.

DD13 How easy/difficult Is it to translate a compilation unit?

Very easy. One keystroke will translate a unit when the cursor is in an image
of the object or when the object has been selected in a directory listing with
the object select keys.

DD14 How much translator error correction is automated?

The R1000 translator is designed to compile incrementally on a statement-
by-statement basis and is intended to be used frequently during interactive
program editing. Syntax and semantics checking are separate operations
that the user can invoke. They are integrated with the editor so that correc-
tions made by the translator are inserted in the source. To this end the
primary error correction performed by the translator is syntactic completion.

DD15 How tolerant of simple syntax errors Is the translator?

Very tolerant. It will correct many syntax errors of omission.

DD16 How Informative are the translator error messages?

For interactive incremental compilation, translator error messages are of two
types. When an error is discovered it is underlined in the source. An ex-
planation of any underlined error can be requested with the explain item key.
Often, having the location of the error pointed out with underlining is sufficient
for the programmer to immediately locate the problem. Sometimes the un-
derlining provided by the syntax checker is misleading in that a correct con-
struct preceding the error is underlined. In these cases the message pro-
duced by the explain item key will usually provide a clue that allows location
of the error.

Semantic error messages are usually straightforward and informative. Ex-
amples are:

"Operator "*" contains no return statement"
"INDEX is undefined"

CMU/SEI-88-TR-21 103

A syntax error message is expressed in terms of an unexpected token recog-
nized by the parser and a list of expected tokens. When the list of what was
expected is short this is helpful. For example, the function declarations in the
matrix management specification that separates parameters with commas
rather then semicolons generates an underlining of the comma and the fol-
lowing message:

Saw ",", expected: ":=", ")", ";"

A long message from the parser is less helpful. For example, the missing "is"
in the declaration of pairwise vector multiplication in Vector_Management
body generates an underlining of U_Len and the following message:

Saw "0_LEN", expected: "eof", "/=", "<=", ">=",
tl II ti . _tt «_«s,M •'**•" n ^ it 11 -> " II —II II /It

• • r • / ~**^ r f ^» / **^ f ~" / \ /
II \ M II if II II / it M i M ll r it II _ II II II II I II II II
ir t t t » t • r t t t \ r • r

"'", "and", "in", "is", "loop", "mod", "not",
"or", "range", "rem", "renames", "then", "xor"

The Environment is designed with the intent that the semantics and syntax
checking capabilities be used frequently. Proper use of these facilities will
insure that the scope within which any part of the program can be incorrect is
kept small.

The Environment also provides facilities for compiling text files. The compi-
lation process turns them into Ada objects. The error reporting provided by
the procedures used to compile text files is rudimentary compared to the
error reporting available when performing interactive incremental compilation
in the editor. An error report for a text file compilation consists of the line
number and column in which the error occurred, the token(s) expected, and
the token found. After one error is found, the text compilation procedures
abandon the compilation effort.

DD17 What are the CPU and elapsed times for translating a compilation unit
into a specified library?

The following times include both installation and coding of the given proce-
dure.

Time for Vector_Management specification
Elapsed Time: 5.52 seconds
CPU Time: 2.48 seconds

Time for Matrix Management specification
Elapsed Time: 3.00 seconds
CPU Time: 1.37 seconds

Time for Vector_Management body
Elapsed Time: 6.13 seconds
CPU Time: 3.09 seconds

Time for Vec_Main body
Elapsed Time: 3.83 seconds
CPU Time: 2.76 seconds

DD18 What are the space utilization ramifications of translating a compilation
unit Into a specified program library?

The semantics of a Rational library are conveyed by both the Ada objects
contained in a library and by information maintained in the enclosing context.
The division between these two is not clear. Therefore, space utilization is

104 CMU/SEI-88-TR-21

reported as the sum of the change in library size generated by installing an
object and the size of an object installed. (Note that the size of a directory
does not include the size of the objects contained within it; it includes only the
information in the directory itself. Some information separate from an Ada
object is generated in the directory by installing an object). No space is
consumed by coding: only installation consumes space.

Space for Vector_Management specification
Library space: 125 bytes
Object size: 13281 bytes

Space for Matrix_Management specification
Library space: 125 bytes
Object size: 11365 bytes

DD19

DD20

DD21

DD22

DD23

Space for Vector Management body
Library space: 125 bytes
Object size: 13083 bytes

Space for Vec_Main body
Library space: 1365 bytes
Object size: 34386 bytes

Describe the mechanics of using the environment to design data struc-
tures, program units, program units interfaces, and control flows.

No graphic design tools are available.

Is a graphical Interface supported?

No. The Rational Environment does support a character-oriented, windowing
interface on a 66 line by 80 column screen. The number of windows is user
definable, with from one to four windows being usable. The Rational windows
do not overlap; they split the screen into horizontal segments.

How much source code generation Is automated (e.g. null body gener-
ation and completion of matching begin .. end statements)?

Both a private part generator and a body part generator are available with
single keystrokes in the editor. The body part generator can create bodies
for single procedures and functions, as well as packages; however, it fails
when attempting to create a body part for a task with no entries. Further
automatic code generation capabilities are described in the answer to DD10.

What are the CPU and elapsed times for translating a compilation unit
Into a specified program library?

SeeDD17.

Describe the mechanics of creating Inter-program library dependencies.

A program unit contained in library A is made visible in library B by executing
the Links.Add command in library B passing the pathname of the unit in
library A. Use of wildcards in the pathname allows making more than one unit
in A visible to B with one Links.Add command. The Rational Environment
checks dependencies across libraries so that a change to a unit in A will not
be permitted if it would make obsolete a unit in B. In general, the Rational
Environment will not allow changes in one unit that make another unit obso-
lete unless the unit that would be made obsolete is demoted to the source
state. The Environment provides the Compilation.Demote procedure (which
is bound to the keyboard) for performing the demotion of all units dependent
on a given unit.

CMU/SEI-88-TR-21 105

D024 Describe the mechanics of creating an executable module.

Because the Rational Environment performs linking at runtime this question
is inapplicable. Linking before runtime can be forced by including the pragma
Main in a main procedure. Linking then occurs when the main unit is
promoted to the coded state. This would be done only if speed of program
execution had become a problem.

DD25 How easy/difficult is it to create an executable module?

See DD24.

DD26 What are the CPU and elapsed times necessary for creating an ex-
ecutable module?

See DD24.

DD27 What are the space utilization ramifications of creating a executable
module?

See DD24.

DD28 How informative are the execution time error messages?

When an exception is raised, the Rational Environment reports only the name
of the exception and the name of the package in which it was raised.

0029 Describe the mechanics of executing a module, including I/O redirec-
tion, execution interruption and resumption and termination.

Modules are executed by promoting a command window containing the name
of the module. The Rational Environment generates humanly readable out-
put and obtains input from users through Standardjnput and
Standard_Output of TextJO. Both normally default to an editor window. For
any particular job Standardjnput and Standard_Output can be reset to be
any text file by using the procedure Program.Run_Job. The file names of the
desired input and output files are passed to Run_Job as parameters, as is
the procedure name. Output can also be redirected for any particular job
using Log.Set_Output. Run_Job is also used for scheduling a job to be run
at a given time. Programs running in the background can be stopped,
started, and killed with the Job.Enable, Job Disable, and Job.Kill commands.
The user can connect to any job with a Job.Connect command and can dis-
connect from the current job, forcing it to run in the background, by typing
Control G.

DD30 Describe the environment's mechanism for enforcing source code, ob-
ject module, and executable module consistency.

By combining the functions of source code, object code, and executable im-
age into the Ada object, the Rational Environment ensures consistency. Note
that the Environment will not allow a compilation unit A that depends on
another compilation unit B to remain in the coded or installed state if changes
are made in B that make A obsolete.

DD31 Does the environment permit browsing of Ada Source code at varying
levels of abstraction?

Once Ada code has been installed, browsing of its uses and definition can be
done with a single keystroke by selecting a construct.

DD32 What are the space utilization ramifications of browsing a compilation
unit?

Reading an object using the editor does not create another version of the
object.

106 CMU/SEI-88-TR-21

OD33 How easy/difficult is it to find an Ada object, subprogram specification,
or body when its file or package location is unknown?

The Rational Environment provides a browsing facility for locating definitions
of objects and subprograms. By highlighting a name with the object selection
keys and then pressing the definition key, the place where an object, sub-
program, or compilation unit is defined will automatically be displayed. If the
definition is in the current image, the window on the image will be reposi-
tioned to show the definition. Otherwise, another window will be opened to
show the definition. The Environment provides markers for a series of defini-
tion requests so that the users path through a series of windows can be
retraced to the starting point. The Environment provides an Ada Other Part
key to automatically bring a specification into view from a body, or to bring a
body into view from a specification.

DD34 How well integrated are the following environment tools: browser, edi-
tor, translator, and program library utilities.

The browser, editor, and translator are completely integrated. Editing an ob-
ject automatically places the user in the library into which the object is com-
piled.

DD35 Describe the mechanics of querying and manipulation of a program
library.

Commands accessed with a single key press will be indicated by the name of
the key enclosed in angle brackets. For example, the Create Ada key will be
shown as < Create Ada>.

Manipulation of Libraries

Two commands, <Create World> and <Create Directory> create a library
within the current context. A full pathname for the directory or world can also
be supplied.

The current library is defined by the cursor position; it will be either the world
or directory listing containing a cursor or the world or directory containing the
object in whose image the cursor is positioned.

Libraries can be cleared by entering the compilation.delete command with the
all object wildcard "@" in a command window opened on the library. The
library pathname could also be supplied as a prefix to the wildcard.

Cleared libraries are deleted by highlighting their name in the context that
encloses them and then pressing the <Object> D key sequence.

Interllbrary Linkage

A compilation unit in library A may reference a compilation unit in library B by
creating a link to the other compilation unit in library A. Links are manipulated
with link commands and are associated only with worlds, not directories.
Links to a world outside (or inside) a given world are called external links.
Links are also required to make units in a single program library visible to
each other. Such links are called internal links and are automatically gener-
ated by translating into a library. The automatic generation of internal links
can be disabled with a session switch. The link commands are as follows:

Links.Add takes the pathname of the unit for which a link is to be created.
The name of the link is by default the name of the unit. If a name other than
the name of the unit is specified, then the referenced unit is effectively
renamed by the link.

Links.Copy copies the links or a subset of the links in one world to another
world.

CMU/SEI-88-TR-21 ^107

Links.Display shows all links associated with a world.

Links.Delete deletes a link or multiple links through use of wildcards.

Links.Dependents shows all Ada units dependent on a link.

Links.Display shows all links in a world.

Links.Replace replaces a specific link with another link

Several other link commands exist that offer subtle variations on the ones
above.

Manipulation of Ada Objects

Ada units are made visible to other units in a library by promoting them to the
installed state and made invisible to other units by demoting them to the
source state. The method of inserting an Ada object into a library was de-
scribed in the answer to DD9. They are deleted from the library by selecting
them with the object select keys and pressing the object key followed by "D"
or "d" for delete. An object cannot be deleted until all the units that depend
on it have been demoted to the source state. Units may be copied from one
library to another with the Library.Copy and Library.Move commands.

Library Queries

Directory listings (which include all objects in a world, or directory,) can be set
to indicate the type of an Ada object (procedure body, package spec or body,
subunit). This can be set either while in a directory or by session switches.
Session switches can be set to cause the directory listings to display the
state of Ada object (source, installed, or coded), although this significantly
slows listings of long directories.

Listings of only the Ada objects in a library together with their state (archived,
source, installed, or coded) and the type of unit can be generated by the
AdaJJst command. AdaJJst has one deficiency; it does not show subunits
in the library that appear in directory listings. Further information about all
objects in a library such as last modifier, date of last modification and size
can be obtained with the Library.VerboseJJst command. A listing of the files
in a library (which holds text or data) can be obtained with Library.FileJJst
command.

The command Compilation_Make, with the effort-only switch set to true,
shows all compilation activity required to bring the transitive closure of a
given unit to a given state (installed or coded). Compilation_Make will not
show missing bodies. However, a program exception will be raised during
execution if an empty body is required during execution.

The Xref.Uses command generates a listing of all constructs upon which a
given unit depends.

The Xref.Used_By will generate a listing of all units dependent on a given
construct.

A series of parameters controls the granularity with which the Xref commands
display dependency information.

DD36 How easy/difficult Is It to manipulate and query the program library?

Most library query and manipulation operations are performed with either one
or two keystrokes or by executing one command from a command window.

The following note applies to questions DD37 through DD42. The Rational
Environment does not allow alteration of coded Ada units except for altera-
tion, addition, and deletion of comments. Thus, to make changes other than

108 CMU/SEI-88-TR-21

DD37

DD38

DD39

DD40

DD41

DD42

to comments, the unit being changed must be demoted to the installed state.
If other units are dependent on some part of a compilation unit being
changed, then ail units involved must be brought to the source state before
changes can be made. However, if upwardly compatible changes are made
(such as adding type declarations to a specification) then dependent units
need not be demoted. If changes are made to a package body, it must be
demoted to the installed state, and then changes can be made incrementally.
Moving dependent units to the installed state is automatic when a given unit
is demoted to the installed state. Moving dependent units to the source state
is accomplished with the Compilation. Demote procedure, which is bound to
the keyboard.

This behavior is unlike that of a conventional edit, compile, link system in that
the demotions must take place before editing is permitted. One might say
that decompilation behavior precedes recompilation behavior. The require-
ment that units dependent on a declaration in a given unit be demoted to the
source state prior to making changes ensures that the system will never be in
an inconsistent state.

What is the system recompilation behavior resulting from modifying a
referenced package specification?

To modify the Vector_Management specification, it had to be demoted to the
installed state. This automatically demoted all dependent units to the in-
stalled state. Before the specification of the pairwise vector multiplication
function could be incrementally deleted, the Rational Environment required
that the units depending on that specification, Vec_Main and
Vector_Management body, be demoted to the source state. A system recom-
pilation using Mat_Main as the main procedure produced the following
results:

Vector_Management body was installed.
The following were moved from installed to coded:
MatrixJManagement spec
Mat_Mam body
Vector_Management body
Matrix_Management body
Get_Col body
Get_Row body

What is the system recompilation behavior resulting from modifying a
subprogram body in a package?

Only package had to be recompiled, not system.

What Is the system recompilation behavior resulting from deleting a
subprogram body in a package?

Only package had to be recompiled, not system.

What is the system recompilation behavior from adding a subprogram
body to a package body?

Only package body had to be recompiled, not system.

What is the system recompilation behavior resulting from adding a sub-
program specification to a package specification?

Same as DD37 except that Mat_Main had to be moved to source before the
function specification could be added to VectorManagement spec.

What is the system recompilation behavior resulting from adding com-
ments to a package body?

CMU/SEI-88-TR-21 109

DD43

No recompilation (or compilation). Comments can be added to a coded unit
without moving it from the coded state.

What is the system recompilation behavior resulting from adding com-
ments to a package specification?

See DD42.

General Questions

Functionality

DD44

DD45

DD46

User Interface

DD47

Describe the mechanics of using the online help facility.

The help facility is accessed by using five keys: <Help>, <Help on Help>,
<Help on Key>, and the <Prompt For> <Help> combination. <Help on Help>
key opens a window describing how to use the other help keys.

<Help on Key> prompts for a keystroke or two keystroke sequence. In key-
stroke sequences, the first key always indicates the entity of interest (object,
region, window, image, line, work, or mark) and the second key indicates an
operation to be performed on the entity, such as "D" for delete. After the
keystroke, the <Help on Key> presents a window that describes the proce-
dure (if any) bound to the key or keystroke sequence that was entered.

<Prompt For> <Help> prompts for a string. If the string is the name of a
command, then a window explaining the command is opened. Otherwise, a
list of all commands containing the string is displayed. For example, typing
"delete" at the prompt displays a list of ail the delete commands, such as
library.delete, links.delete, compilation.delete, object.delete, etc. To identify a
command, and thereby present a procedure description rather than a list of
procedures, <Prompt For> <Help> requires only enough of the command
name to uniquely identify it.

Does the program library use a DIANA tree or any Intermediate
representation?

Ada objects are stored in the Rational system only as DIANA trees. When
machine code is generated, it is attached to the DIANA tree representing an
Ada object.

If an intermediate representation Is used, Is it Instead of or in addition
to source code files?

The Rational Environment DIANA trees are used instead of source code files.

Characterize the interactivity of the environment in terms of general
responsiveness and information content of the environment's feedback.

The Rational Environment presents a user-definable number of windows on a
character-oriented, 66-line screen. Each window representing a library or
object is labeled with a pathname of the library or object. Windows
representing program output are labeled with the name of the program unit
generating them. When a window is open on a directory, a scrollable direct-
ory listing appears in the window. The Rational Environment thus provides
excellent feedback on where a user is within the hierarchical directory struc-
ture and what the contents of any window represent. The Environment main-
tains a listing of windows that have been opened during a session and pro-
vides commands to return to any window on the list. To allow the user to
manage a work session, windows can be selectively removed from the list so
that a long session need not generate an overwhelming list of objects visited.

110 CMU/SEI-88-TR-21

DD48

DD49

DD50

DD51

Execution of many system commands generates a log indicating all actions
that the system is taking and any error conditions that have occurred. Log
messages generated by the system are maintained for an entire session and
are available for review at any time. This logging capability is also provided
for the debugger so that all commands issued and responses generated dur-
ing a debugging session are automatically available for review.

Qualitatively summarize the learning curve as it applies to using the
environment for programming in the small activities.

The methods of navigating, issuing commands, and generating programs in
the Rational Environment are sufficiently different from the methods of com-
mand line oriented environments that use the traditional edit, compile, link
cycle that intensive initial training is required to use the Environment at all.
This training is typically provided in a three day, hands-on seminar by the
staff of Rational and is sufficient to allow a programmer who knows Ada to
perform all the kinds of work addressed by this experiment.

Since the user is always in the editor, and since Ada procedures are the only
means of performing operations in the Environment, the Environment has a
highly consistent interface. Thus, once the user is over the first major hurdle
of learning how to manipulate the Environment, the primary additional learn-
ing required of users is to assimilate the range of Ada procedures that the
Environment provides.

When users attempt to use a range of features broader than those covered in
initial training, the Environment will provide occasional minor but frustrating
puzzles about how to accomplish specific tasks for some time. However, this
problem is by no means unique to the Rational Environment.

Describe the user interface's error handling, including its tolerance for
minor errors and clarity of error messages.

Using an invalid combination of keys for invoking a command generates a
beep. Since the translator parses the command window, errors in commands
issued through the command window generate standard Rational translator
error messages. The location of the error is underlined, and an explanation
of the error is available with the explain item key.

Assess the general helpfulness of the user interface (e.g., command
completion and command history retrieval mechanisms).

The Rational Environment allows the contents of any command window to be
re-executed or edited and re-executed. Previous command window contents
can be retrieved by placing the cursor in the command window and then
using the object undo and object redo keys to traverse a stack of command
window contents maintained by the system. When a retrieved command
window is executed, the windows above it on the stack are discarded. The
Environment will recognize the shortest command abbreviation that provides
an unambiguous name for the command. The complete key will bring up a
named parameter association for any command typed into the command win-
dow with prompts for the parameter indicating the type of input expected.
Command parameter defaults automatically appear in the parameter associ-
ation.

Assess the quality of written documentation. Pay particular attention to
support for the translator and other primary tools.

Rational documentation (see [6]) is organized into a User's Guide, the Basic
Operations Manual, the Reference Summary, and a series of 11 reference
volumes describing all the procedures in the Environment.

CMU/SEI-88-TR-21 111

DD52

DD53

DD54

System Interface

DD55

The User's Guide contains material on becoming familiar with the terminal,
editing text files, and developing simple Ada programs.

The Basic Operations Manual summarizes the material covered in Rational
training and is an easy to use and concise guide to how to perform the basic
Environment operations for those who have had Rational training.

The remainder of the documentation is reference material describing the pro-
cedures and parameter types comprising the Environment. Within each
package, procedures and parameter type descriptions are listed in alphabetic
order. Packages are grouped into logical sections such as work space man-
agement, editing images, and so forth. Each section contains a table of
contents and an index. Many sections contain introductory material that
covers information of a scope wider than a package (such as information
about wildcards used across the Environment procedures).

Software engineers who had the initial Rational training, but no experience
with the Rational Environment, had difficulty using the reference material to
solve some problems because the material describes the Environment at the
program interface level of the procedures and parameter types in the
packages comprising the environment. The common reaction has been "If
you already know how to do it, you can easily find the references."

Describe the helpfulness of the online help facility, including support
for common activities (i.e. translation, editing and creating executable
modules).

The help facility is described in the response to DD44.

Describe any noted Inconsistencies exhibited by the environment.

Some commands which require string parameters provide the quotes in the
command window prompt, while others require the user to remember to type
the quote marks.

Missing subunit bodies are not detected by keys <Code (All Worids)> and
<Code (This Worid)> bound to the Compilation.Make command. However,
missing package bodies are detected. During system development this
serves as a stubbing facility. A system with missing subunits may be ex-
ecuted, and will execute unless a missing subunit is called. In this case
execution will halt with a Program Error. For later phases of development
(integration testing, product testing), missing subunits not discovered until
runtime could be a problem. Missing subunits and missing package bodies
should be treated identically by a compilation procedure which checks for
closure.

How well does the environment support the concept of representing
multiple views of Ada code?

SeeDD31.

Assess the communications bandwidth of the editor (e.g. screen
oriented and/or line oriented; supports multiwindowlng).

The Rational editor is multiwindowing and allows text to be copied or moved
from one window to another using exactly the same commands used to copy
or move text within a window. Multiple objects can be open at once, and
multiple windows can be opened on an object by copying an open window
with management attributes and operations can be associated the <Window>
C key combination. The editor offers syntax and semantics checking and

112 CMU/SEI-88-TR-21

DD56

DD57

DD58

completion. Rational stated in a training session that the maximum effective
baud rate of the Environment for some operations is 4800 baud due to the
speed of Rational terminal hardware. Although powerful, the multiple win-
dows, command windows, and accompanying reverse video banners make a
cluttered screen, and can be confusing to the novice user.

Assess the communication bandwidth of the environment.

The Rational Environment has the capability of presenting large amounts of
information simultaneously. The system message window, the 3 default user
windows, command windows, and reverse video window banners can be
confusing for the novice system user. Learning to make use of the infor-
mation presented and learning to tailor the windows contributes to the steep-
ness of the novice user's learning curve.

How is the underlying OS file system utilized for the implementation of
the environment database?

There is no host OS underlying the Rational Environment.

How difficult Is it to use OS tools from the environment?

Since there is no distinction between the OS and the Rational Environment,
this question does not apply.

4.5. Design and Development Analysis

4.5.1. Functionality
Features of the Rational Environment allow the use of Ada as a compilable design language.
The Environment does not require that Ada constructs in a compilation unit be complete before
they can be compiled; prompts for declarations, expressions, and statements can be left in an
Ada object that can be compiled and run. Typical strategies for allowing compilation of incom-
plete designs, such as use of a TBD package, are not required in the Rational Environment. A
program unit containing prompts can even be executed, and will only result in a runtime Program
Error when incomplete code is encountered.

The Rational Environment does not provide any graphical design aids for code development.

Ada source is entered through the Rational editor. The editor is unusually powerful, providing
template generation, syntactic completion of Ada constructs, semantic templates for subprogram
calls (by generating a named parameter association), and interactive, incremental syntax and
semantics checking. By using the editor's error prevention and detection capabilities after enter-
ing each statement or small group of statements, entry of syntactically and semantically correct
programs is greatly facilitated.

The procedures for installing source code in a library and subsequently generating machine code
are all bound to the keyboard, so installation and coding are one-keystroke operations. These
keystrokes can be used either when the cursor is in an image of an Ada object or when an Ada
object is selected in a directory listing. Since the Rational Environment links at runtime, users
need not perform linking before running a program. Linking before runtime can be forced by the
use of pragma Main in a main procedure.

CMU/SEI-88-TR-21 113

The Rational Environment will also generate a stubbed out Ada body when provided with a speci-
fication when the <Create Body> key is used. Also, if no specification in provided for a body, the
Rational Environment provides one.

Program library creation is fast and easy, requiring only the press of a key to invoke the
Create_World or Create_Directory procedures. Specification of a current library is performed
automatically by placing the cursor in a library or in the image of an Ada object contained in the
library. A program compiled into one library can reference a program compiled into another
library through the use of link commands that create pointers from one library to another.

The Rational Environment library system does not allow units in the library to become obsolete. If
a change is made to a unit A that would make unit B obsolete, unit B must be made invisible to
other units by demoting it to source before unit A can be changed. The Environment provides
tools for automatically performing demotion that are similar to the tools provided for automatically
performing promotion. The Environment also tracks dependencies between libraries so that a
unit in library A referenced by a unit in library B cannot be changed without first demoting the unit
in library B.

Environment switches can be set to show the state (source, installed, or coded) of all Ada units in
a directory. Program libraries can be queried using the AdaJJst and VerboseJJst commands
that list units and their state (source, installed, or coded) and the Xref command that generates
cross reference listings. The tool for checking library completeness does not find missing subunit
bodies.

All the basic functionality necessary to develop Ada code is provided in a very easy to use
environment. Most common operations are initiated with single keystrokes. The editor greatly
facilitates the generation of syntactically and semantically correct code.

4.5.2. Performance
A dedicated R1000 Model 200-20, running the Delta 0 release Environment was used when
timing was performed. Program library creation and small compilation unit translation (consisting
of package specifications of less than twenty lines of Ada code) were timed. Executable module
creation takes place in the Rational Environment links at runtime. Linking can be forced during
compilation by use of the pragma Main in the main procedure.

- Program library creation:

Elapsed time: 1.73 seconds.
CPU time: 0.70 seconds.

- Small Compilation Unit (average of installation and coding
of Vector_Management specification and Matrix Management
specification):

Elapsed time: 4.26 seconds.
CPU time: 1.93 seconds.

Program library creation consumed 7426 bytes. Translating a small unit resulted in the utilization

114 CMU/SEI-88-TR-21

of 12448 bytes (average of Vector_Management specification and Matrix_Management specifi-

cation object size and library size increase).

The recompilation characteristics of the Rational Environment are discussed in Evaluation of the
Rational Environment.

4.5.3. User Interface
The user of the Rational Environment is always in the system editor and therefore has an ex-
tremely consistent system interface. The editor capabilities available to the user depend on the
type of window being edited. The most restrictive is the directory window in which only the editor

cursor movement and object selection and deletion operations are available. The editor is at its

most powerful in editing Ada objects and command windows.

The command language of the Environment is Ada. Ada procedures can be invoked either by
binding them to the keyboard of the Rational Terminal (which offers 160 function key combina-
tions, 96 of which are prebound to commonly used Environment commands) or by entering them

in a command window (created with the Create_Command key) that provides a declarative block
in which Ada procedures may execute. The full editor capacities including syntactic and semantic
completion, and interactive syntactic and semantic error checking are available for editing com-

mand windows. Since the Environment commands are Ada procedures, syntactic or semantic
errors in entering a command generate Ada translator error messages.

The Rational Environment is a character-based windowing system. Windows can contain direct-

ories, Ada objects, text files, program output, etc. Windows are always labeled with a pathname
of a directory or file or with the name of the program generating output in the window. Proce-
dures for navigating the directory structure are bound to the keyboard, so many common move-

ments (up a level, down a level, home, from spec to body, and from body to spec) are available
with one keystroke. The system also has a browsing capability that provides a direct jump from
the place where any type, subprogram, or variable is used to the place where it is declared.
Markers can be set in the directory system to retrace a navigational path generated by browsing.

The Ada procedures comprising the system commands have been written to use a large set of
wildcards, which makes navigation and complex directory operations easy. Command history is

supported with the ability to re-execute command windows and to retrieve the previous contents
of command windows. Many commands that change the state of the system (such as

Compilation.Promote or Library.Copy) generate logs, which are retained for an entire user ses-
sion. Since the user interface consists entirely of Ada procedures and key bindings, it is highly

customizable. A problem in customizing the Environment is that many system-level packages,
such as those that manipulate directories, are currently undocumented.

The help system is comprehensive and convenient to use. Help on any key or Environment
session switch is available at a keystroke, and a facility for searching the help files by keyword is

also available with a command procedure. Keywords are components of command names, not
command parameters.

CMU/SEI-S8-TR-21 115

The user interface of the Rational Environment is very sophisticated and user friendly. It incorpo-
rates many features that enhance human computer interaction, including a windowing system,
easy navigation through the directory system, a true system browsing capability, a powerful com-
mand language (Ada) and good online help.

The learning curve for the user interface is fairly steep. Users with three days training required
about two weeks of using the Environment before they were completely comfortable with it, but
productive work was performed during the acclimatization period. After using the Environment for
an extended period users were reluctant to return to a conventional, command line oriented
environment.

4.5.4. System Interface
The Rational Environment does not run on top of a host operating system. It was designed from
the ground up as an Ada development environment, which has led to the complete integration of
the Ada development tool set with the Rational operating system.

116 CMU/SEI-88-TR-21

5. Unit Testing and Debugging Experiment

5.1. Introduction
The Unit Testing and Debugging Experiment exercises many aspects of unit testing and debug-

ging. Provided are Ada units to test, support routines for a test harness, and test data files.
Experiment instantiation calls for the construction of a test harness, using the capabilities of the

APSE as much as possible. It also exercises browsing facilities, debugger capabilities

(breakpoints, displaying variable values, tracepoints, etc.), static and dynamic analysis capabil-
ities, and regression testing capabilities.

In the following experiment instantiation, experiment steps are numbered, and substeps are let-

tered. Any comments concerning the experiment step in the context of the Rational Environment
are in regular type in braces ({}). The instantiation of the experiment is provided as a transcript

of actual keypresses. Comments as to the correct context in which to type the indicated keys,
and comments as to what the keystroke will accomplish are indented, enclosed in braces ({ }),
printed in a different typeface. The required keystrokes are indented and printed in typeface,

and are indicated by the letter(s) appearing on the key or its keymap designation appearing in
angle brackets (< >). When a command results in information appearing in the debugger win-

dow, the information appears following the command, indented and printed in a different

typeface.

5.2. Experiment
1. Build and browse a test harness and the supporting subprograms to test the func-

tions which implement matrix-vector multiplication, vector multiplication, and vector
inner-product.

a. Build a test harness by copying a subset of the required files from AdaLlB
the main procedures, test_harness and a supporting I/O package,
testio_spec and testlo_body_exe-errors. (Note that the _exe-errors suf-
fix indicates the presence of execution errors).

{Seel.b.}

b. Translate the previously mentioned procedure and package into the pro-
gram library named TEST_LIB and then attempt to create an executable
module. Take note of the quality and content of the error messages.

CMU/SEI-88-TR-21 117

{Place cursor in the Test_Lib library and create
an Ada object.}
<Object> I
{Enter code for procedure Test_Harness and check
semantic correctness.}
<Semanticize>
{No errors found; promote to
coded state.}
<Code Unit>
{Return cursor to the enclosing library.}
<Enclosing>

{Enter in Testio'spec and Testio'body
in the same manner.}

{Run Test_Harness.}
<Create Command>
{Enter "Test_Harness" in the
command window.}
<Promot>
{Note Errors: procedure bodies
Test_Matrix_Vector_Mult,
Test_Vector_Mult, and Test_Inner_Prod have
no coded bodies.}

c. Retrieve the missing subprograms from the following files in AdaLlB
testmatmuit testvecmult, and test_lnnerprod. Translate the sub-
programs into the program library TEST_LIB. Create an executable mod-
ule.

{Same as 1.b.}

d. In order to become familiar with the test harness structure, browse its con-
stituent subprograms. Take note of the various browsing methods
available.

i. Browse the main procedure TEST_HARNESS.
{Move cursor to Test_Harness'body.}
<Definition>
{Now use the object keys and arrow keys to
browse through the procedure.}

ii. Browse the dependent (called) procedure
TEST_MATRIX_VECTOR_MULT.

{Cursor is still in Test_Harness. Place
cursor on declaration of procedure
Test_Matrix_Vector_Mult and select it.}
<Object> <Left Arrow>
<Definition>
{Now browse as in previous substep.}

Hi. Browse the dependent package (WITHed) package specification
TEST 10.

118 CMU/SEI-88-TR-21

{Cursor is still in
Test_Matrix_Vector_Mult, return cursor
to Test_Harness'Body.}
<Enclosing>
{Return cursor to TEST_LIB library.)
<Enclosing>
{Move cursor down to Testio'Spec.}
<Definition>
{Now browse as in previous substep.}

iv. Browse the function body of GET_MATRIX.
{Cursor is still in Testio'spec. Move
cursor to declaration of Get_Matrix and
select it.}
<Object> <Left Arrow>
<De finit ion>
{Now browse as in previous substep.}

v. Browse the function body of TEST_VECTOR_MULT.
{Cursor is still in Get_Matrix'Body;
return cursor to Test_Lib.}
<Enclosing>
{Move cursor to .Test_Vector_Mult.}
<Definition>
{Now browse as in previous substep.}

2. Debug the test harness and associated supporting subprograms.

a. Create a small test data file using the format described in Exhibit 2.1 and
the data (which abides by that format) shown in Exhibit 2.2.

(See 2.b.}

b. Execute the module using the test data file created above. This results in a
CONSTRAINT_ERROR. (Note: the module reads from standard input and
writes to standard output).

{Return to Test_Lib library.}
<Enclosing>
<Enclosing>
{Run Test_Harness using the test data from
exhibit 2.2.}
<Create Consnand>
"Test_Harness"
<Promot>
{Vector-Multiplication data works correctly.}
{Inner-Product data works correctly.)
{When running the Matrix-Vector multiplication
data a CONSTRAINT_ERROR is raised. Terminate
the execution of Test_Harness.
<Job Kill>

c. Determine the cause of the CONSTRAINT_ERROR, modify the subprogram
in error, and continue to execute the module. Note the level of integration
between the debugger, the editor, and the translator.

i. Set breakpoints upon the raising of an exception. Execute the pro-
gram and determine the problem statement and subprogram.

CMU/SEI-88-TR-21 119

{The Rational debugger automatically breaks on exceptions unless
the debugger behavior is modified to propagate exceptions with the
propagate procedure.}

{Return to command window containing
"Test_Harness"}
<Window> <TJp Arrow>
{Run Test_Harness again but under the
debugger.}
<Meta> <Promot>
<Execute>

{"Exception CONSTRAINT_ERROR (Array Index) caught at
.TESTIO.GET_MATRIX.3s". Get_Matrix procedure is displayed with
the line where the exception occurred highlighted.}

ii. Query the values of the variables num_rows and num_cols and the
loop counters i and j in the procedure TEST_IO.GET_MATRIX. De-
termine the dimensionality of the variable M. Conclude that the up-
per bounds for the loop counters for the inner and outer loops must
be reversed.

{There are two ways to display a value. The following transcript
uses both.}

<Prompt For>
<Put>
{Command window opens; enter i
as value of parameter "Value"}
[Value => ""]
tl 4 H

<Promot>
{Output to debugger execution
window:}
4
{To display value of j,
place cursor on "j," and select it.}
<Object> <Left Arrow>
<Put>
{Output to debugger execution
window:}
1

{Routine is trying to read in an 4 x 3 matrix instead of a 3 x 4 matrix.
The loop counters need to be switched.}

iii. Modify GET_MATRIX so that the upper bound for the outer loop is
num_cols and the upper bound for the inner loop is num_rows.

120 CMU/SEI-88-TR-21

{Cursor is already in Get_Matrix'body.
Turn off the selection of the selected
line. }
<Item Off>
{Demote the state of Testio'Body to
installed.}
<Install Onit>
{Place cursor at the beginning of the loop
to be changed and select the loop.}
<Object> <Left Arrow>
<Edit>
{An edit window opens displaying
loop code to be edited; make change
and return the corrected version to
the Testio'Body.}
<Promot>
{Return Testio'Body to coded state.}
<Promot>

iv. Restart execution at the beginning of the procedure GET_MATRIX,
verifying that the error has been corrected.

{Job cannot be restarted. It must be terminated and a new one must
be executed.}

{Return to Test_Lib library.}
<Enclosing>
{"Test_Harness" is still in command
window.}
<Create Command>
{Terminate the old debugger job and begin
a new one.}
<MetaXPromot>
<Execute>
{Type input to the executing program:
3 4 <Enter>
1.0 2.0 3.0 4.0 <Enter>
2.0 4.0 6.0 8.0 <Enter>
3.0 6.0 9.0 12.0 <Enter>
4 <Enter>
1.0 2.0 3.0 4.0 <Enter>
{Correct results appear in the
debugger execution window.}

3. Perform a static analysis of the module created in above (Step 1c). Measure the
CPU and elapsed times for performing the static analysis.

a. Examine the overall quality of the program's structure by:

i. Identifying violations against a prescribed set of programming guide-
lines.

ii. Producing a measure of each subprogram's complexity (e.g.,
McCabe's Cyclomatic).

iii. Identifying unreachable statements.

{No static analysis tools are available.}

b. Collect statistics including (but not limited to):

CMU/SEI-88-TR-21 121

i. number of executable lines

ii. percent comment lines

iii. frequencies of statement types

{No supported statistics tools are available.}

4. Create a library of test data using the specified test data files residing in AdaJJB
as necessary.

a. Create a test data file to test the "normal" functionality of matrix-vector multi-
plication including the following cases (use test_lnput_normal in
AdaJJB):

{Return to Test_Lib library.}
<Window> <Up ArroH>
<Window> <Up Arrow>
<Create Text>

{A command window opens; supply
"Test_Input_Normal as the value of
parameter "File_Name."}
[File_Name => ""]
"Test_Input_Normal"
<Promot>
{Test_Input_Normal window opens,
enter data; when finished,
commit the data to disk.}
<Promot>

b. Create a test data file to test the following boundary cases (use
test input boundary in AdaJJB):

{Same as above.}

c. Create a test data file to structurally test (i.e., test subprogram control flows)
the subprograms implementing matrix-vector multiplication, vector multipli-
cation, and inner product (use testjnputstructure in AdaJJB) (Note
that the MATRIXJMANAGEMENT and VECTOR MANAGEMENT
packages are included in Appendix 6.B.)

{Same as above.}

d. Create a test data file to stress test the three subprograms using data with
combinations of large and small numbers (use testjnput_stress in
AdaJJB).

{Same as above.}

5. Perform the initial baseline test of the three mathematical functions: matrix-vector
multiplication, vector multiplication and inner product.

a. Create a file containing the expected output when using the files previously
created in the preceding step. (Use test_output_expected from AdaJJB.)

{Create file in the same manner as in 4.a.}

b. Execute the module using the test input data and create a file containing the
actual test output.

{In order to have the TestJHarness input be a given text file and the output
be sent to a text file, TestJHarness must be run by using the command

122 CMU/SEI-88-TR-21

"!Commands.Program.Run_Job." The command Run_Job allows
"Testjnput" specified as the input filename and Test_Output_Actual" to be
specified as the output filename.}

{Go to Test_Lib}
<Create Command>
"File_Utilities.Append"
<Complt>
(Source => "Test_Input_Normal",
Target => "Test_Input");

<Promot>
{Repeat using Test_Input_Boundary,
Test_Input_Structure, and
Test_Input_Stress as the source file.}
<Create Command>
"Program.Run Job"
<Complt>
(S => "Test_Harness",
Debug => False,
Context »> "$",
After => 0.0,
Options => "Input := Test_Input;
Output : = Test_Output_Actual",
Response => "<PROFILE>");
<Promot>

c. Compare the actual output to the expected output.

<Create Command>
"File_Utilities.Difference"
<Complt>
(File_l => "Test_Output_Expected,
File_2 => "Test_Output_Actual",
Result => "",
Compressed_Output ~> False,
Subobjects => False);
<Promot>

{The only significant difference was in the result for the first case in
Test_lnput_Stress.}

{Expected}
Numeric_Error_Raised
{Actual}
— input matrix
1.00E+00 2.00E+20
1.00E+00 2.00E+00
— input vector
1.00E+01 2.00E+01
— result vector
3.60E+102 9.10E+02

{The actual output does represent the correct answer.}

6. Perform a dynamic analysis of the module. Measure the CPU and elapsed time for
performing the analysis.

a. Collect performance statistics, including CPU time for the currently imple-
mented subprograms which perform matrix, vector arithmetic.

CMU/SE1-88-TR-21 123

3 00E+40 4 00E+60 5 00E+80 6 00E+100
3 00E+00 4 00E+00 5 00E+00 6 00E+00

3 00E+01 4 OOE+01 5 00E+01 6 00E+01

{No performance analysis tools are available.}

b. Perform a test data coverage analysis, and identify sections of code that are
not executed when using the test input data.

(No coverage analysis tools are available.}

c. Collect general statistics, including the number of conditional and uncondi-
tional branches traversed and the number of times each subprogram was
executed.

{No general statistics tools are available.}

7. Create a variation of matrix-vector multiplication using a parallel algorithm.

a. Substitute for the current implementation of matrix-vector multiplication the
new implementation retrieved from parallelmatmult in Ada LIB

{Cursor is in Test_Lib library;
go to Project_Lib library.}
<Enclosing>
{Place cursor on Matrix_Management'Body
and select it.}
<Object> <Left Arrow>
{Try to edit Matrix_Management'Body. }
<Edit>
{Edit not allowed; note message in message
window that Get_Col'Body and Get_Row'Body
would be obsolete.}
{Go to Project_Lib.}
<Window> <Down Arrow>
{Place cursor on Matrix_Management'Body
and select it.}
<Object> <Left Arrow>
<Uncode (This World)>
{Open window on Matrix_Management'Body.}
<De£inition>
<Edit>
{Enter code for Parallel_Matmult.}

b. Define a task type as follows in the declarative part of the package body of
MATRIXMANAGEMENT;

task type ROW_PRODUCT is
entry SEND_VECTORS (Row, Col : in VECTOR);
entry RETRIEVE_PRODUCT (P : out FLOAT);

end ROW_PRODUCT;

task body ROW_PRODUCT is separate;

c. Create the task body for ROW_PRODUCT by copying it from
row_product_exe-errors in AdaJJB.

124 CMU/SEI-88-TR-21

{Enter code for Row_Product'body. Place
cursor on first line of its declaration and
select the declaration.}
<Object> <Left Arrow>
<Create Comraand>
{Command window opens; enter:}
"Make_Separate"
<Promot>
{Commit data to disk.}
<Enter>

d. Create a new module employing the parallel implementation.
{Go back to Matrix_Management'Body.}
<Enclosing>
{Go back to Project_Lib.}

<Enclosing>
{Place cursor on Matrix_Management'Body
and select it.}
<Object> <Left Arrow>
<Code (This World)>
{Get_Col, Get_Row, Row_Product, and
Matrix_Management go from Source (S)
to Coded (C) state.}

8. Regression test the new module and discover that the output differs from the initial
baseline test output created when using the sequential algorithm. Discover that the
new parallel algorithm yields different answers and also results in a deadlock situa-
tion.

{Testing is done manually. The answers to the Matrix_Vector multiplication tests
differ. The first case from Test_lnput_Structure results in a deadlock situation.}

9. Debug the parallel implementation of matrix-vector multiplication.

a. Set breakpoints in GET_MATRIX after every iteration of the outer loop.
{Go to Test_Lib.}
<Create Command>
"Test_Harness"
{Run with the debugger.}
<MetaXPromot>
<Create Command>
"Debug.Take_History"
<Promot>
{Activate history recording in order to
do a Show (histories) and Mistory_Display
later on in the script.}
{Go to Test_Lib}
<Window> <Dp Arrow>
<Window> <Up Arrow>
{Place cursor on Test_Io'body}
<Definition>
{Place cursor at beginning of the inner loop
in GetJMatrix'body and select it.}
<Object> <Left Arrow>
{Set breakpoint.}
<Break>

CMU/SEI-88-TR-21 125

b. Set a tracepoint after every iteration of the outer loop for the loop counter i
and for the ith row of the matrix M.

{The Rational Environment does not have tracepoints in the VAX/VMS
sense. Therefore, the breakpoints which were activated in 9a. will be used
along with the proper Debug Put procedures.}

c. Set a tracepoint for the v in GET_VECTOR for every time v changes value.
{Cursor is still in Test_Io.body;
move cursor to statement in loop in
Get_Vector'body and select it.}
<Object> <Left Arrow>
{Set breakpoint.}
<Break>

d. Compare the values of M in GET_MATRIX and v in GET_VECTOR with the
respective values in the test input file and conclude that the data is being
read properly.

126 CMU/SEI-88-TR-21

<Execute>
"Matrix_Vector_Mult"
<Promot>
Testing Matrix-Vector Multiplication
ii o 3 »

<Proxnot>
{Break at Get_Matrix.2s}
<Run>
<Run>
"1.0 2.0 3.0"
<Promot>
{Break at Get.Matrix.3s}
<Prompt For>
<Put>
[Put => ""]
II I II

1
<Promot>
<Run>
<Run>
<Run>
{Read in first row of the matrix.}
{Display values read in for the matrix.}
<P ronrpt F o r>
<Put>
[Put => ""]
"M(l,l) "
<Promot>
1.00e+00
<Prompt For>
<Put>
[Put => ""]
"M(l,2) "
<Promot>
2.00e+00
<Prompt For>
<Put>
[Put => ""]
"M(l,3) "
<Promot>
3.00e+00
<Execute>
"4.0 5.0 6.0"
<Promot>
II O II

<Promot>
<Run>
"10.0 20.0 30.0"
<Promot>

CMU/SEI-88-TR-21 127

{Break at Get_Vector.2s}
<Prompt For>
<Put>
[Put => ""]

<Promot>
2
<Run>
(Display values read in for the vector.}
<Prompt For>
<Put>
[Put => ""]
"v(l) "
<Promot>
1.00e+01
<Run>
(Break at Get_Vector.2s}
<Prompt For>
<Put>
[Put => ""]
"v(2) "
<Promot>
2.00e+01

e. Set a breakpoint upon rendezvous with
PARALLEL_ROW_PROD.SEND_VECTORS.

{Due to naming conventions on the Rational Environment,
"Parallel_Row_Prod.Send_Vectors" is listed as
"Matrix_Management.Row_Product."}

(Go to Matrix_Management.Row_Product,
place cursor on rendezvous statement, and
select it.}
<Object> <Left Arrow>
{Set breakpoint.}
<Break>

f. Display task status, the current breakpoints and tracepoints, the program
stack and history.

<Task Display>
Task_Display ("", All_Tasks);
Job: 232 Root task: #B54E8
ROOT_TASK, #B54E8: Step complete at
.TEST_HARNESS.TEST_MATRIX_VECTOR_MCTLT.9s [Pri = 1}

<Show Breaks>
show (BREAKPOINTS:*;
Active Permanent Break 1 at .TEST_IO.GET_MATRIX.2S

[any task]
Active Permanent Break 2 at .TEST_IO.GET_VECTOR.2S

[any task]
Active Permanent Break 3 at

.MATRIX_MANAGEMENT.ROW_PRODUCT.IS
[any task]

(Go to debugger window.)

128 CMU/SEI-88-TR-21

<Debugger Window>
<Create Command>
{Enter in command window:}
"Show (Traces)"
<Promot>
Show (TRACES);
No tasks are tracing calls.
No tasks are tracing statements.
No tasks are tracing exceptions.

<Stack>
Stack ("", 0, 0) ;
Stack of task ROOT TASK, #B54E8:

TEST_MATRIX_VECTOR_MULT.9s
TEST_HARNESS.2s.3s
TEST_HARNESS.2s
command_jprocedure. 1 s
command_procedure [library elaboration block]

<Create Command>
(Enter in command window:}
"Show (Histories)"
<Pro*not>
Show (Histories);
History of Calls is being recorded for:

all tasks at all locations
History of Statements is being recorded for:

all tasks at all locations
History of Exceptions is being recorded for:

all tasks at all locations

<Create Command>
(Enter in command window:}
"History_Display"
<Promot>
History_Display (0, 0, "");
History of statements executed by all tasks :

(oldest..newest)
Timastamp Depth Location and Task
251269226399 6 .TEST_IO.GET_VECTOR_DIM. Is

[ROOT_TASK, #B54E8]
.TEST_HARNESS.TEST_MATRIX_VECTOR_M0LT.6s
 7s
 8s

.TEST_IO.GET_VECTOR.1S
 Is
 2s

.TEST_HARNESS.TEST_MATRIX_VECTOR_MDLT.8s
 9s

g. Display the values for rowvector.all and col_vector.all in
PARALLEL_ROW_PROD.SEND_VECTORS and notice that they are equal
at each rendezvous.

251276928611 5
+ 336 5
+ 996 5
+ 1265 5
+ 1383 6
+ 1771 6
251370692649 5
+ 487 5

CMU/SEI-88-TR-21 129

<Run>
<Execute>
<Run>
<Run>
<Prompt For>
<Put>
[Put => ""]
"Col_Vector.all"
[1..3]
[1 => 4.OOE+00 .. .
2 -> 5.00E+00 .. .
3 => 6.00E+00 ...]

<Prompt For>
<Put>
[Put => ""]
"Row_Vector.all"
[1..3]
[1 => 4.OOE+00 . . .
2 «> 5.OOE+00 ...
3 => 6.OOE+00 ...]

h. Modify the line in PARALLEL_ROW_PROD.SEND_VECTORS which as-
signs colvector to be

Col_Vector := New Vector'(Col);

{Go to Parallel_Row_Prod.Send_Vectors.}.
<Item Off>
{Move cursor to and select statement
to be changed.}
<Object> <Left Arrow>
<Edit>
{Edit window opens with selected
statement in it; make change in edit
window and place change back in body.}
<Promot>
{Place body back in coded state.}
<Promot>

i. Set a breakpoint at the entry and exit point for the matrix-vector multipli-
cation (MVM) function.

{Due to a problem in the debugger, was unable to set a breakpoint in the
overloaded function "*". Overload resolution of infix operators was not work-
ing. To solve the problem, had to change all occurrences of "*" to the proce-
dure call "Times(U, V)." The transcript of steps following still applies, even
with the change.}

130 CMU SEI-88-TR-21

{Go to Matrix_Management'body, move
cursor to the first declaration statement,
and select it.}
<Object> <Left Arrow>
{Set breakpoint.}
<Break>
{Move cursor to the last statement in
the procedure and select it.}
<Object> <Left Arrow>
{Set breakpoint.}
<Break>

j. Jump to the entry point of the MVM function.

{In order to make use of changes made above, current job is terminated and
a new one is started.}

{Put job into the background.}
<Control> <G>
<Job Kill>
{Go to Test_Lib.}
<Create Command>
"Test Harness"
<MetaXPromot>
{To re-use previous jobs' breakpoints,
must reactivate them.}
<Activate>
{Enter data.}

k. Set a tracepoint for the vector variable product upon exiting the MVM func-
tion.

{Continue through the breakpoints
to the second breakpoint, which is
just before the return statement
in the MVM function.}
<Eacecute>
<Prompt For>
<Put>
[Value => ""]
"Product"
1.4E+01

I. Using a test case that previously (before the parallel algorithm was
implemented) resulted in the raising of an ERROR condition in
TEST_HARNESS, determine where the deadlock occurs. Assess the level
of difficulty in determining the cause of the deadlock. (Note that the ERROR
condition is initially caused by the raising of DIMENSIONERROR in the
MVM function.)

(The deadlock occurs as a result of the Dimension_Error exception being
raised. The function '*' attempts to end but a Debug Task Display shows
that it has children tasks running and waiting at an accept for an entry call.
Since a parent cannot end before its children end, the program becomes
deadlocked. Upon examination of the situation the reason for the deadlock
was fairly obvious.}

CMU/SEI-88-TR-21 131

<Meta> <Promot>
<Execute>
5 3
1.0 2.0 3.0
1.0 2.0 3.0
1.0 2.0 3.0
1.0 2.0 3.0
1.0 2.0 3.0
5
10.0 20.0 30.0 40.0 50.0
Exception Vector_Management.Dimension_Error
caught at .Matrix_Management.times' N(2) ,2s
<Task Display>
#444FB(>Matrix_Management.Row_Product):Running,
waiting at accept for entry call [Pri = 1]

m. Use rowjjroduct from AdaLiB to create a new module that no longer
deadlocks. (Note that this new version of ROW_PRODUCT includes a set
statement with a terminate alternative.)

{Define Matrix_Management'body.Row_Product.}
<Edit>
{Change to coded state.}
<Code Unit>
{Go to Matrix_Management'body.}
<Enclosing>
{Go to Project_Lib.}
<Enclosing>

10. Regression test the corrected module.
{Place cursor on Test_Lib.}
<Definition>
<Create Command>
"Test_Harness"
<Proxnot>

{Test is done manually. It works.}

5.3. Functionality Checklist

PRIMARY ACTIVITIES

Activity Step # Supported
(Y/N)

Unit testing

Create and debug test harness 1,2 No

Create test Input data for
functional testing 4a No
boundary case testing 4b No
structural testing 4c No
stress testing 4d No

Perform Initial test
create expected output data 5a No
produce actual output data 5b Yes

Observations

Done manually.

132 CMU/SEI-88-TR-21

compare actual and expected data 5c

Perform dynamic analysis
measure execution time by subprogram 6a
perform test data coverage analysis 6b
identify code not executed 6b
measure statement execution frequency 6c

Perform regression testing 8,10

Debugging
Set/reset breakpoints on program unit
entry/exit 9i
exception 2c
statement 2c
nth iteration of a loop 9a
variable changing value gen
variable taking on a specified value gen
rendezvous 9e

Control execution path
jump n statements gen
enter a specified subprogram 2c,9i
exit the current subprogram gen

Query program state
display source code 2c
display breakpoints 9f
display tracepoints 9f
display stack 9f
display history 9f
display task status 9f

Modify program state
modify variable values 2c
add, modify and delete code 2c,9h

No Done manually.

No
No
No
No

No

Yes
Yes
Yes
Yes
No
No

Yes

Yes
Yes
Yes

Yes
Yes
Yes
Yes
Yes
Yes

Yes
No Changes can be made but they will not

affect current debugging session.

SECONDARY ACTIVITIES

Unit testing

Perform static analysis
check against prog, guidelines 3
measure subprogram's complexity 3
identify unreachable statements 3

Debugging

Set/reset tracepoints on
program unit entry/exit gen
exception 2c
statement 9b
nth iteration of a loop 9b
variable changing value gen
variable taking on a specified value gen
rendezvous gen

No
No
No

Yes
Yes
Yes
No
No
No
Yes

CMU7SEI-88-TR-21 133

5.4. Experiment Answers

Question Response

TD1 Describe the mechanics of using the environment for creating and de-
bugging the test harness.

There are no tools for generating a test harness.

TD2 Describe those aspects of test harness generation which are
automated.

SeeTDL

TD3 How easy/difficult is it to use the environment for creating and debug-
ging a test harness?

The same level of difficulty as developing any Ada program in the Rational
Environment. Procedures to execute a program (Program.Run and
Program.Run_Job), as well as routines to compare output with expected out-
put (FileJJtilities.Difference), are available to be used in a test harness.

TD4 Does the debugger operate in a screen mode and/or command line
mode?

The debugger is always operating in a screen mode. Commands are entered
either through use of keys to which debugger procedures are bound or
through a command window that can be attached to any window on the
screen. This treatment of the command interface is completely consistent
with any other use of the Rational Environment.

TD5 Is a multi-windowing capability available from within the debugger?

The Rational debugger only operates in a multi-window mode. It uses a
debugger window in which output of debugger commands is displayed and a
source code window that displays source code when either single stepping or
hitting break points. Commands and their parameters are echoed to the
debugger window so that the window forms a complete log of a debugging
session. During single stepping or when hitting breakpoints, the debugger
highlights the line about to be executed in the source code window. If the
program being debugged generates readable output, the output appears in a
third window.

TD6 Describe the mechanics of accessing test data from within the
debugger.

The mechanics of accessing test data from within the debugger are the same
as they are outside the debugger since it is possible to move freely in and out
of the debugger during a debugging session. The user opens a window
containing the contents of the test data file.

TD7 How easy/difficult is it to access test data from within the debugger?

Very easy. See TD6.

TD8 Describe the mechanics of setting and resetting breakpoints.

There are two ways to set breakpoints. The simplest method is to select a
statement in the source code window and then press the <Break> key. The
second method is for the user to be prompted for the Debug.Break procedure
in a command window. When executed from a command window, the state-
ment on which the break is to be set is passed to the Debug.Break either by
selecting it (as in the simple method) or by passing the name of the state-
ment at which a breakpoint is to be set as a parameter. Statement names

134 CMU/SEI-88-TR-21

'

are the name of the procedure in which the statement occurs concatenated
with "." and a line number. The line number may be determined with the
Debug.Display procedure. Declarations and statements are numbered
separately. When Debug.Break is executed from a command window, three
parameters may be set: Stack_Frame, Count, and ln_Task. Stack_Frame
provides a means for specifying a frame in which to set a breakpoint. Count
specifies the number of times the statement is to be executed before a break
occurs. ln_Task specifies that a break is to occur only if the code is executed
by a particular task.

Once the debugger is invoked it remains active until the user logs off. This
allows the debugger to remember breakpoints that have been set in a pro-
gram. If a program is re-executed, the command "Activate (0)" reactivates all
breakpoints previously set in the program. Specific breakpoints can be reac-
tivated by passing in the break point identification number.

TD9 How easy/difficult is it to set and reset breakpoints?

Very easy using the select a statement and push a key method.

TD10 Are graphical tools available from within the debugger to convey the
program state?

No.

TD11 Describe the differences (If any) between invoking a module and invok-
ing the module for debugging. A module can be executed either by select-
ing it in a directory and pressing the promote key or by opening a command
window, typing in the module name, and pressing the promote key. Similarly,
a module can be invoked for debugging by selecting it in a directory and
pressing the meta key, followed by the promote key, or by opening a com-
mand window, typing in the module name, and pressing the meta key fol-
lowed by the promote key.

TD12 Describe the mechanics of controlling the execution path.

Two debugger procedures that control execution are bound to the keyboard.
Debug.Execute causes the program to run until a breakpoint is hit.
Debug.Run steps through a program until a specified event has taken place.
A parameter to Debug.Run defines the event. Debug.Run is bound to the
keyboard with two default events, Local_Statement and Statement.
Local_Statement causes Debug.Run to step to the next statement in a sub-
program without descending into the code of subprogram calls. Statement
causes Debug.Run to step through a program descending into the code of
subprogram calls. Additional parameters to Debug.Run allow stopping at the
point of entry to procedures, just prior to returning from a subprogram, just
after returning from a subprogram, and at the beginning and end of rendez-
vous.

For concurrent programs the debugger offers a rich set of commands to stop
and start the execution of individual tasks or groups of tasks.

TD13 Describe the mechanics of invoking the debugger. Does the program
have to be retranslated?

The mechanics of invoking the debugger are explained in TD11. Programs
do not have to be retranslated before they can be run under the debugger.

TD14 Describe the mechanics of modifying the program state.

The value of a variable in a program can be changed with the procedure
Debug.Modify. The variable to be modified can be indicated either by select-

CMU/SEI-88-TR-21 135

ing it or by providing its pathname. The components of records and arrays
must be modified individually; there is no provision for modifying them with
aggregates. The debugger does not allow the following objects to be modi-
fied:

• access types (can be modified only to the null value)

• variables of task types

• constants

• in parameters

• discriminants of variant records

• for loop iteration variables

Code can be modified at any point from within the debugger in the same
manner that it is modified from outside the debugger: Define the module to
be modified, put it in the installed or source state and edit. Because the
source code and the executable module are one object in the Rational Envi-
ronment, this action causes the debugger to lose track of its location in the
code. The statement to be executed ceases to be highlighted in the source
code window, the debug stack command displays the message "Program
has been recompiled since debugger started," and variable values can no
longer be displayed. Although an edited program will continue to execute,
debugging must be restarted in order for the debugger to generate useful
information.

TD15 Describe the mechanics of querying the program state.

Display source code:

Source code being single-stepped, source code around a breakpoint, and
statements that raise an exception are automatically displayed in the source
code window. The procedure Debug.Display will display source around a
pathname. However, the pathname must include a declaration or statement
number.

Display variable values:

Variable values are displayed by selecting the variable and pressing the
debug put key or by invoking the Debug.Put procedure from a command
window and passing a variable name. When Debug.Put is invoked from a
command window, the variable name is evaluated in a default context which
is the current scope. A separate procedure can reset the context in which the
variable name is evaluated. Display of a selected variable is independent of
the evaluative context.

Structured and designated objects can be displayed by user-written proce-
dures to improve the readability of the output. This capacity is useful, for
example, when displaying a linked list.

Display breakpoints and tracepoints:

Breakpoints are shown by pressing the Show Breaks key. Tracepoints are
shown by invoking Debug.Show from a command window and passing the
Debug.Trace parameter. Rational tracepoints do not show values of vari-
ables, they print a message when a particular event occurs in a task.

Display stack:

Press the Stack key.

136 CMU/SEI-88-TR-21

TD16

TD17

TD18

TD19

Display history:

Invoke the Debug.Show procedure from a command window and pass the
Debug.History parameter. History recording must be turned on by the
TakeJHistory procedure before a call of Debug.Show with the history
parameter has an effect.

Display task status:

Press the Task Display key.

How easy/difficult is It to control the execution path?

Very easy.

How easy/difficult is it to modify the program state?

Very easy.
How easy/difficult is it to query the program state?

Very easy.

How effective is the debugger In conveying the program state at any
given point (e.g., source code straddling the current breakpoint, vari-
able values in the current scope, the name of the calling subprogram)?

The debugger can convey most aspects of the program state. Below is a
sample session with the debugger.

<Execute>
Exacuta ("");

Intk ("", 1, "");
Bruk «t MlKtad objaat.
Th« breakpoint haa baan craatad and »ctiTtt«d:
AatiTa M———I Braak 3 at .Manax_MaKaOEMEllT.it0W_PltODUCT.13 [anytaak]

<Task Display>
Taak_Display ("", ALIJIASKS) ;

Job: 232, Root task:#B54K8
ROOTJTASK, |B54E8: 3tap complata at
.TEST HARNESS.TEST MATRIX VECTOR MULT. 9. [Pri - 1]

<Show Breaks>

Show (BREAKPOINTS);
AotiT. Paxaaaant Braak 1 at .TB3T_I0.aZT_MaXKIX.23 [any task]
AatiTa Paraanant Braak 2 at .TE3T_IO.OET_VECTOR.2S [any taak]
AatiTa Parnanant Braak 3 at .MATRIX_MAW»(atMEllT. ROI_PRODUCT . 13 [any taak]

<Create Command>
"Show (Traces)"
<Promot>

Show (TRACES);
Ho tasks in tracing aalla.
No taaka ara tracing stataaanta.
Mo tasks ara tracing axoaptiona.

<Stack>
Staok ("", 0, 0);
Stack of taak ROOT TASK, IB54E8:

TE3T_MATRIX_VECTOR_MULT. 9 s
TEST_HARNE33.2s.3s
TE3 T_HARNE3 3 . 2 s

.Is
[library alaboration block]

CMU/SEI-88-TR-21 137

<Create Command>
"Show (Histories)"
<Promot>

Show (HISTORIES) |
Hiatory of Calls ia baing racordad for:

all tasks at all location*
Hiitory of Statssaants ia baing racordad for:

all tttki at all location*
Hutory of Exaaptiona ia baing racordad for:

all taaka at all location*

<Create Comma nd>
"History_Display"
<Promot>

History_Diaplay (0, 0, "");
Hiatory of atatantanta anatttad by all taaka : (oldast. .nawaat)

Timaetaaip Dapth Location and Taak
251269226399 6 .TEST_IO.0ET_VECTOR_DIM.la [R0OT_Ta.SK, #B54E8]

+ 127 6 la
251276928611

+ 336

5

5

. TE3T_HARHES3 . TEST MATRIX VECTOR M0T.T . 6a

.7. .7*
+ 996 5 8a
+ 1265 6 . TEST_X0. 0ET_VECTOR. 1 a
+ 1383 6 .7.-la
+ 1771 6 2a

251370692649 5 .TEST HARNESS . TEST MATRIX VECTOR MULT.8a

TD20 How integrated is the translator and editor with the debugger?

The three tools are basically standalone tools. The editor can be used with
the debugger running in another window, but if program code is modified the
debugger will still run the old versions of the source code. The old program
must be terminated and a new one invoked in order to run the updated ver-
sion.

The debugger can no longer report any information about a program unit that
has been edited while it is being debugged. This is due to the fact that
source code and object code are contained in the same Ada object in the
Rational Environment. Editing an object apparently destroys some linkages
that allow the debugger to show the source corresponding to the object code.
This seems to be a reasonable limitation.

The debugger is completely integrated with the Rational browsing capability.
Selecting a variable and requesting a definition by pressing the <Definition>
key causes a window containing the source code for the definition of the
variable to open.

TD21 What are the space utilization ramifications of instrumenting code for
debugging?

None.

TD22 Do the analysis tools present a graphical representation of the
program?

No analysis tools are available.

TD23 What are the space utilization ramifications of Instrumenting code for
analysis?

See TD22.

TD24 Describe the Information available from static analysis.

No supported static analysis tools are available.

TD25 Describe the mechanics of performing static analysis.

138 CMU/SEI-88-TR-21

TD26

TD27

TD28

TD29

TD30

TD31

TD32

TD33

TD34

TD35

TD36

TD37

TD38

TD39

TD40

TD41

Not applicable, see TD24.

How easy/difficult is it to perform static analysis?:

Not applicable, see TD24.

What are the CPU and clock times for performing a static analysis of the
testharness and modules to be tested?

Not applicable, see TD24.

Describe those aspects of performing tests which are automated.

There are no tests available which are automated.

Describe the mechanics of using the environment to create a test plan
and test data.

Test data must be created manually with the editor.

Describe those aspects of test data generation which are automated.

Test data generation is not automated.

How easy/difficult is it to use the environment to create a test plan and
test data?

See TD30.

Describe the differences (if any) between invoking a module and invok-
ing the module for unit testing.

There are no available tools for unit testing.

Describe the mechanics of performing initial unit testing.

See TD32.

How easy/difficult is it to perform initial unit testing?

See TD32.

Describe the Information available from dynamic analysis.

There are no available tools for dynamic analysis.

Describe the mechanics of performing dynamic analysis.

See TD35.

How easy/difficult Is It to perform dynamic analysis?

See TD35.

What are the CPU and clock times for performing a dynamic analysis of
the test harness and modules to be tested?

See TD35.

Describe the mechanics of performing regression testing.

There are no available tools for regression testing.

How easy/difficult is It to perform regression testing?

See TD39.

Describe the mechanics of setting and resetting tracepoints.

The tracing facility of the debugger causes a message to be displayed each
time a certain kind of event occurs in a task for which tracing is enabled.
Traces can generate a message for a statement, call, rendezvous, or excep-
tion. They do not provide values of variables. Tracing is enabled or disabled

CMU/SEI-88-TR-21 139

by executing Debug.Trace from a command window. The parameters are On
(enable/disable toggle), Event (what is to be traced), ln_Task (in which tasks
is tracing enabled), At_Location (which specifies a scope within which tracing
is enabled), and Stack_Frame (which specifies the frame or subprogram to
perform tracing.)

TD42 How easy/difficult is it to set and reset tracepolnts?

Very easy.

TD43 How accessible are environment tools from within the debugger?

Ail tools available outside the debugger are also available while using the
debugger.

TD44 Assess the quality of written documentation. Pay particular attention to
support for the debugger and testing related tools.

The documentation for the Rational debugger includes an introductory over-
view of the debugger functions and naming conventions, a section giving
detailed information about each debugging procedure and the types of spe-
cial Debug procedure parameters, and an index to debugging topics that
covers technical terms and procedure and type names. This documentation
should be adequate for any user to teach himself how to use the debugger.
The Basic Operations Manual provides four pages of step-by-step instruc-
tions of common debugger operations designed to help the novice user get
started.

TD45 Describe any noted inconsistencies exhibited by the Environment.

There are no noteworthy inconsistencies exhibited by the environment.

TD46 Describe the helpfulness of the online assistance, especially as it re-
lates to unit testing and debugging.

The online assistance provides descriptions of all debugging procedures. It
does not include the introductory material or description of procedure
parameter types provided in the written documentation. In providing infor-
mation about a debugging procedure, the online assistance is as helpful and
easier to use than the written documentation since it is basically an online
version of the written documentation with searches on name fragments of the
debugging procedures added. In addition, the online help immediately pro-
vides a description of any procedure bound to a key whenever the user
presses the <Help on key>, followed by the key of interest.

TD47 Do the analysis tools use an underlying database to store and/or
retrieve program related information?

No supported analysis tools are available.

TD48 How accessible are the underlying OS tools from within the debugger?

There is no underlying operating system for the Rational Environment. For
the availability of Rational Environment tools while debugging, see TD43.

TD49 How accessible is online assistance from within the debugger?

Very accessible. It is the same as from outside the debugger.

TD50 How informative are the debugger error messages?

In general, they are very informative.

TD51 How informative are the test manager error messages?

No test manager tools are available.

140 CMU/SEI-88-TR-21

TD52 How tolerant of simple errors is the test manager?

No test manager tools are available.

TD53 How tolerant of simple errors is the debugger?

The debugger describes the problem in a message and highlights the line in
which the error occurred. A more detailed explanation of the error is usually
provided if the <Explain> key is pressed.

TD54 Qualitatively describe the response times for interacting with the
debugger.

Responses are instantaneous for most operations. There does seem to be a
startup time associated with the debugger of several seconds.

TD55 Qualitatively summarize the learning curve as it applies to using the
environment for unit testing and debugging.

The debugger is a powerful tool. Some learning is required to become ac-
quainted with all its capabilities. The basic operations of stepping through a
program, setting breakpoints, and displaying object values are very easy to
learn and to use.

5.5. Unit Testing and Debugging Analysis

5.5.1. Functionality
There are no tools for test harness generation, regression testing, or test management.

There are no tools for performance analysis. However, the R1000 is intended as a universal host
development system. Since code generated for the R1000 will never run on target machines, a
performance analyzer is more important for the target environments than for the R1000. Perfor-
mance patterns on the R1000 should be expected to differ from performance patterns on targets
since the R1000 has hardware optimizations for implementing certain Ada operations that will

very likely not exist for target machines. The R1000 has target build tools that can be used to
develop code that will be recompiled on target machines that support an APSE. The recom-

pilation is driven by a script generated by the R1000. If the target machine APSE includes a
performance coverage analyzer, then that tool will be available to examine programs developed

on the R1000.

The browsing capability in combination with the debugger provides a very powerful tool. Stepping

through code while the next line to be executed is highlighted in a window makes source-level
debugging easy, as does the ability to display variable definitions and uses interactively.

The Rational Environment debugger also has a full complement of commands for setting, reset-

ting, and displaying breakpoints and tracepoints. Rational breakpoints can be defined so that
they will break only when the code containing the breakpoint is called by a specific task or after a
certain number of executions. Rational tracepoints do not display values; they simply print a

message indicating that some event has taken place in a task. Commands are provided to
determine whether the debugger breaks on exceptions or propagates them. This behavior can

be localized by task and by code location. For example, the debugger could be set to propagate

all exceptions except ones raised in a specific procedure when called by a specific task. Com-

CMU/SEI-88-TR-21 141

mands are also provided to stop and start the execution of tasks and to display task states.
There are commands for stepping the execution of programs by statements or by events (such as
making or returning from procedure calls), to display program variable values, and to modify

program variable values. The debugger also provides a facility for defining how the debugger will
display user-created types such as linked lists. This functionality was not tested by the exper-

iment.

5.5.2. Performance
No recompilation is required to allow a program to be run under control of the debugger. There
does appear to be a startup time associated with the debugger, but it is minimal compared with

the time that would be required by a recompilation. The debugging and browsing facilities are

highly interactive.

The Delta 0 Release of the Rational Environment did have a problem in the debugger. The

experiment requires the setting of a breakpoint in an overloaded function. The function happens
to define an infix operator. The debugger was unable to resolve the reference. The Rational
Customer Response Center indicated that they were aware of the bug, that it would fixed in the

next release, and suggested as a workaround that the function be redefined as a normal function
call. The workaround was easy to implement using the browsing and incremental editing facil-

ities. It also corrected the problem of overload resolution.

5.5.3. User Interface
Although no test management tools are provided in the Rational Environment, they could be

easily constructed given the nature of the user interface. Procedures can be written in Ada,
making use of the programmatic Ada interface to such packages as Program.Run_Job and
File Utilities Difference to manage different kinds of testing.

The debugger always operates in a screen-oriented mode with one window devoted to showing

the results of debugger commands and another window devoted to showing the source code
being debugged. The source code window highlights the line about to be executed when step-

ping or when a breakpoint is hit. Most common debugger commands are bound to function keys
and will, in many cases, operate on objects selected in the source code window. Thus, displaying
an object's value can be as simple as selecting the object in the source code window and press-

ing the Debug Put key. The ability to browse code is completely integrated with the debugger,

and the browsing interface is consistent with the debugger interface. In general, the debugger
interface is unusually easy to learn and use.

The Rational debugger interface is consistent with the overall Rational Environment interface.
Thus, a user familiar with the rest of the Rational Environment will already know the debugger
and browsing interface and needs only to learn the debugger commands.

142 CMU/SEI-88-TR-21

5.5.4. System Interface
Because the Rational Environment is the operating system for the Rational R1000 series com-
puters, there is no interface to tools of an underlying operating system. The debugger and

browsing facility are well integrated into the Environment and actually sold as part of the Rational
Environment. The debugger and the browsing facility are also completely integrated.

CMU/SEI-88-TR-21 143

144 CMU/SEI-88-TR-21

6. Prototype ACEC

6.1. Introduction
The final experiment of the Environment Evaluation Methodology is the compilation and execution

of the Ada Compiler Evaluation Capability (ACEC) test suite that was assembled by the Institute
for Defense Analysis (IDA). The version of the ACEC that was publicly available and used for this

evaluation is described in the User's Manual for the Prototype Ada Compiler Evaluation
Capability, Version 1, by Audrey A. Hook, Gregory A. Riccardi, Michael Vilot and Stephen Welke,
Institute for Defense Analysis, October 1985.

The SEI experience with the ACEC is described in Chapter Eight of Evaluation of Ada

Environments. Since the prototype ACEC did not provide any capability for analyzing the ACEC
results, the SEI developed an analysis program that generates statistics from the ACEC results

files. The SEI discovered that the present design of the ACEC does not generate measurements
of sufficient reliability for the ACEC suite to be used for its primary purpose, the evaluation of

individual language features. Lack of reliability was indicated by two problems: lack of

repeatability and negative deltas. Repeatability was directly tested using DEC'S VAX Ada com-
piler by running a subset of the ACEC three times. Variations in CPU usage of up to 4% were
found for compilation and of up to 50% for run time. The repeatability problems led the SEI to the
following conclusion:

This jitter, if representative of other environments, does not invalidate the observed
ratios of overall compiler performance, but it does invalidate any fine-grained measure-
ments, particularly any differential statistics.

Negative deltas occurred when a test using a language feature took less time than a control test
that did not use the language feature. Clearly, negative deltas are a byproduct of the non-

repeatability of a measurement that was measured directly with VAX Ada. Negative deltas ap-

peared in the results of VAX Ada running under VMS, Verdix's VADS compiler running under
ULTRIX (DEC Unix), and with the Rational R1000. The SEI conclusion about using the ACEC to

measure individual language feature performance is that"... the differential statistics produced by
the analysis program must be viewed with extreme skepticism" and that" ... no conclusions can
be drawn."

In accordance with the SEI finding, the report on the results of implementing the ACEC on the
Rational R1000 does not discuss individual language features. The aggregate measures for all

tests and the aggregate measures for each of the major test categories (normative performance,

normative capacity, optional performance, and optional special algorithms) are reported for the
compilation of the ACEC from source state to coded state. According to the IDA User's Manual

for the Prototype ACEC, Version 1, the optional special algorithms tests "are combinations of

language constructs that are characteristic of synthetic benchmark programs." As such, the ag-
gregate measures for just this category are reported for compilation from ASCII text file format to

a loaded main program.

CMU/SEI-88-TR-21 145

6.2. Implementing the Prototype ACEC

The ACEC was implemented on the Rational R1000 using the Delta 0 Release of the Rational
system software. Since the command language of the Rational R1000 is Ada, and since Ada

procedure calls were available to obtain the required statistics (such as CPU time) used by a job,

generation of the support software required to drive the ACEC suite was easy. (See Appendix C

for listings of the support software.) No problems were encountered using the Rational Environ-

ment to compile the components of the support software supplied with the ACEC. The Environ-
ment was dedicated to running the ACEC suite for each run.

6.2.1. Implementation Choices
The ACEC test suite collects compilation and execution timings based on a traditional compile,

link, load, and execute cycle. The Rational Environment departs from the traditional cycle, and it
is difficult to arrive at a timing method that provides a fair comparison to other APSEs.

There are three areas where implementation choices were made so that the collected data would

be more comparable to previously studied APSEs. First, the ACEC tests could be compiled from
a text file to a coded state or from an Ada object in source state to a coded state. Second, linking

could occur when the tests were run or when they were compiled. Finally, compilation time could
reflect the cost of loading a main program or execution time could reflect the cost of loading.

Two sets of results are presented. The first, Section 6.3.1 shows timings collected from the com-
pilation and execution of all four categories of the ACEC test suite. Compilation time in this table

was measured as the time to promote an Ada object in source state to coded state and to link the
object. Compiling from Ada objects in source state eliminates the parsing which traditional com-
pilers perform when starting with text files. Because compilation on the Rational is typically
performed on Ada objects in source state, these results are significant when compared with the

other APSE results.

The second set of results (see Section 6.3.3) shows timings collected from the compilation and

execution of only the architecture category "optional special algorithms." Compilation time was

collected as the time to compile from text to coded state plus the time to produce a loaded main
program. The optional special algorithms were chosen because they represent more standard
benchmark-type code, rather than code that is written to test language features. Note that this
compilation time also incurs the cost of "pretty printing" the source code. More traditional envi-
ronments provide formatting as a function separate from compilation.

For both sets of results, the pragma Main was added to the source in order to force compile time
linkage. This is not standard or recommended practice when developing or maintaining Ada units

in the Rational Environment, but was done here to make results comparable to the results from

other APSEs. Link and load usually occur when execution of a program is requested.

One incompatibility between the architecture of the ACEC suite and the Rational treatment of

program libraries had to be resolved to enable the use of Ada objects. Ten of the text files in the
suite contained non-nested compilation units of the following form:

146 CMU/SEI-88-TR-21

package Small Unit is

end Small JJnit;

with Small_Unit;
procedure An_ACEC_Main_Procedure is

end An_ACEC_Main_Procedure;

These were the tests BSRCA2, BSRCA3, CENTB2, NULLA1, NULLA2, PKGEA1, PKGEA2,
PKGSA1, PKGSA2 and SHARA2. The Rational library system stores non-nested compilation

units in separate Ada objects. Thus, the packages contained in the ACEC text files are split into

multiple Ada objects. The objects split out of the text files must be compiled into the program
library before the test harness can compile the ACEC main procedures. To include the compi-

lation times of the packages split out of the ACEC text files, a separate record was kept of their
compilation times. The times in the compilation log generated by the main ACEC test harness
were then adjusted by hand for the ten test programs that contained non-nested compilation

units.

6.2.2. Problems Found in the ACEC Suite
When the ACEC suite was first executed, the Rational compiler detected four erroneous ACEC

programs (LOSCA1, LOSCA2, SRTEA1 and SRTEA2) at runtime. These erroneous programs
have not been detected by any other Ada runtime system. Erroneous programs use the lan-

guage incorrectly but need not be caught by either an Ada compiler or by Ada runtime. Those

incorrect uses that are treated as erroneous are specified in the Ada Language Reference
Manual, (ANSI/MIL-STD-1815A-1983). In each case where the Rational Environment detected

an erroneous program, an uninitiated variable was passed to a procedure. Passing a variable as
an In or in out parameter causes the variable to be evaluated, and evaluation of an uninitialized

variable is defined as erroneous. Once the erroneous programs were detected, they were cor-
rected by initializing variables in their declaration. Rational indicates this class of erroneous
program by raising numeric errors, regardless of the type of the uninitialized variable.

Another problem was found with the programs BSRCA2 and BSRCA3. Both assume that an

implementation has no predefined integer types with a range greater than the predefined type
Integer. This is not the case with the Rational, where the largest integer type is Longjnteger.

The problem arose when assigning System.Minjnt to a variable of type Integer. The Ada Lan-

guage Reference Manual (see [2]) defines System.Minjnt to be the smallest value of all
predefined integer types in an implementation. Assigning System.Minjnt, which on the Rational

had the value Longjnteger'First, to a variable of type Integer caused a constraint error. The
problem was corrected by changing the type of the offending variable.

Two capacity tests, BLEMA2 and RCDSA2, generated no instrumentation measurements.

BLEMA2 contains sixty-five nested blocks. Compilation determined that the program was seman-

CMU/SEI-88-TR-21 147

tically and syntactically correct, but object code was not generated since this exceeded the com-
piler capacity of fifteen static nestings. The problem was reported by the compiler with the follow-
ing message:

BLEMA2 could not be promoted to coded;
it was promoted to installed. Static
nesting level exceeds 15 (note:
inserting a package into your sequence
of nested blocks/subprograms will
fix this).

RCDSA2 was a capacity test that used a record with 400 fields. This exceeded the documented
Rational limit of 256 fields, and generated the following runtime error message:

Instruction_Error(type mismatch).

In both these cases, the ACEC performed its job, which was to detect capacity limits in the
compiler being tested.

A problem previously detected in the Design and Development Experiment also affects the ACEC
results; a procedure that compiles a program cannot also measure the size of the resulting Ada
object. An attempt to do so generates a random number. Thus, the object code size field is not
available in the test results. Since object code generated by the Rational is stored in Ada objects
that contain far more information than an object code file, the size of Ada objects is not an
indication of the size of Rational's object code. There is no way to measure object code size
directly. Section 6.3.4 is provided as a means to compare disk utilization for executable images
with other APSEs.

Once the changes to individual tests described in Section 6.2.1 were made, the Rational Environ-
ment had no trouble compiling and executing the prototype ACEC suite.

148 CMU/SEI-88-TR-21

6.3. Numeric Results

6.3.1. Aggregate Measurements tor All Tests

MEAN VALUE
Compilation Quantity

Elapaad Tim*

CPU Time

Rational

30.0(1.0)

24.9(1.0)

VMS/VAXSet

52.6(1.8)

15.2(0.6)

UNIX/VADS

61.8(2.1)

44.8(1.6)

Inatrumantatton Quantity

Elapaad Tima

CPU Time

4.4(1.0)

4.2(1.0)

16.2(3.7)

16.2(3.9)

23.6(5.4)

0.2(0.0)

Run Tima Quantity

Elapaad Tima

CPU Tima

15.8(1.0)

S.1 (1.0)

28.8(1.8)

17.0(3.3)

36.7 (2.3)

23.3 (4.6)

MINIMUM VALUE
Compilation Quantity

Elapaad Time

CPU Tima

Rational

6.7(1.0)

4.8(1.0)

VMS/VAXSet

39.6 (5.9)

6.3(1.3)

UNIX/VADS

39.2 (S.9)

26.3 (5.5)

Inttrumantation Quantity

Elapaad Tima

CPU Tima

0.0 (-)

0.0 (•)

0.0 (-)

0.0 (•)

0.2 (-)

0.0 (-)

Ron Tima Quantity

Elapaad Tima

CPU Tima

MAXIMUM VALUE
Compilation Quantity

Elapaad Tima

CPU Tima

11.2(1.0)

1.0(1.0)

Rational

1760.1 (1.0)

1684.6(1.0)

12.2(1.1)

0.6 (0.6)

VMS/VAXSet

297.2 (0.2)

121.3(0.1)

12.8(1.1)

0.5 (0.5)

UNIX/VADS

606.1 (0.3)

590.2 (0.4)

instrumentation Quantity

Elapaad Tima

CPU Tima

204.7(1.0)

201.6(1.0)

402.4(2.0)

402.0 (2.0)

460.5 (2.2)

4.6 (0.0)

Hun Tima Quantity

Elapaad Tima

CPU Tima

216.1(1.0)

202.6(1.0)

415.2(1.9)

402.8 (2.0)

Tabla 6*1: Aggragatad Measurements for All Tests

473.8 (2.0)

459.9 (2.3)

CMU/SEI-88-TR-21 149

6.3.2. Aggregated Measurements tor Each Architecture Category

COMPILATION-TIME: ELAPSED TIME (SECONDS) — TOTALS

ARCH. CATEGORY
MEAN VALUE

ALL.CATEGORIES

NORMATIVE.PERFORMANCE

NORMATIVE.CAPACITY

OPTIONAL.FEATURES

OPTIONAL ALGORITHMS

#TESTS RTNL1 DEC2 VADS3

173 30.0(1.0) 52.6(1.8) 61.8(2.1)

131 15.6(1.0) 49.8 (3.2) 58.1 (3.7)

11 213.9(1.0) 69.2 (0.3) 120.6(0.6)

3 67.9(1.0) 139.0(2.0) 91.0(1.3)

28 21.0(1.0) 50.3 (2.4) 53.0 (2.5)

MINIMUMVALUE

ALL.CATEGORIES

NORMAITVE.PERF.

NORMATIVE_CAPACITY

OPTIONAL.FEATURES

OPTIONAL ALGS.

173 6.7(1.0) 39.8 (5.9) 39.2 (5.9)

131 6.7(1.0) 39.8 (5.9) 39.3 (5.6)

11 7.7(1.0) 40.4 (5.2) 42.2 (5.5)

3 15.2(1.0) 45.6 (3.0) 47.3(3.1)

28 9.2(1.0) 39.9 (4.3) 39.2 (4.3)

MAXIMUM VALUE

ALL.CATEGORIES

NORMATIVE_PERF.

NORMXnVE_CAPACITY

OPTIONAL_FEATURES

OPTIONAL ALGORITHMS

COMPILATION-TIME: TOTAL CPU TIME (SECONDS)

173 1760.1(1.0) 297.2 (0.2) 606.1 (0.3)

131 95.1 (1.0) 88.5 (0.9) 135.8 (1.4)

11 1760.1 (1.0) 156.2(0.1) 606.1 (0.3)

3 132.1 (1.0) 297.2 (2.2) 151.0(1.1)

28

)NDS)

65.0(1.0)

— TOTALS

99.7(1.5) 81.1 (1.2)

ARCH. CATEGORY
MEANVALUE

ALL.CATEGORIES

NORMATTVE_PERFORMANCE

NORMATIVE_CAPACITY

OPTIONAL_FEATURES

OPTIONAL_ALQORITHMS

MINIMUM_VALUE

ALL.CATEGORIES

NORMATIVE.PERFORMANCE

NORMAnVE.CAPACITY

OPTIONAL.FEATURES

OPTIONAL ALGORITHMS

#TESTS RTNL DEC VADS

173 15.1 (1.0) 15.2(1.0) 44.6 (3.0)

131 11.7(1.0) 13.0(1.1) 40.6 (3.5)

11 201.0(1.0) 33.7 (0.2) 106.2(0.5)

3 39.3(1.0) 46.6(1.2) 63.2(1.6)

28 15.6(1.0) 14.6 (0.9) 36.4 (2.4)

'73 4.8(1.0) 6.3(1.3) 26.3 (S.S)

131 4.8 (1.0) 7.3(1.5) 27.4 (5.7)

11 4.9(1.0) 6.3(1.7) 30.3 (6.2)

3 9.3(1.0) 8.4 (0.9) 28.0 (3.0)

28 6.2(1.0) 6.3(1.0) 26.3 (4.2)

MAXIMUMVALUE

ALL.CATEGORIES

NORMATIVE.PERFORMANCE

NORMATIVE.CAPACITY

OPTIONAL.FEATURES

OPTIONAL ALGORITHMS

173 1664.6(1.0) 121.3(0.1) 590.2 (0.4)

131 66.4(1.0) 55.6 (0.6) 99.9(1.2)

11 1664.6 (1.0) 121.3(0.1) 590.2 (0.4)

3 77.1 (1.0) 106.4(1.4) 107.4(1.4)

28 45.2(1.0) 39.3 (0.9) 61.8 (1.4)

Table 6-2: Compilation Results

' Rational 1000 Modal 200-20. Rational Environment Ralaaaa, DaltaO.

'Digital Equipment Corporation Ada Compilation System Varaion 1.2, VMS, 6 megabytes main memory. 102 megabytes disk space.

'Verdix Ada Development System, Varaion 5.1, ULTRIX Varaion 1.2, 6 megabytes main memory, 202 megabytes dak space.

150 CMU/SEI-88-TR-21

INSTRUMENTATION: ELAPSED TIME (SECONDS) TOTALS

ARCH. CATEGORY
MEAN VALUE

ALl_CATEGORIES

NORMATIVE_PERFORMANCE

NORMATIVE_CAPACITY

OPTIONAL_FEATURES

OPTIONAL ALGORITHMS

TESTS

171

131

9

3

28

RTNL

4.4(1.0)

3.4(1.0)

1.3 (1.0)

1.1(1.0)

10.3 (1.0)

DEC

16.2(3.7)

17.9(5.3)

1.3(1.0)

8.4 (7.6)

1S.0(1.S)

VADS

23.6 (S.4)

28.1 (7.7)

2.4(1.8)

4.9(4.5)

21.7(2.1)

MINIMUM VALUE

ALL_CATEGORIES

NORMATIVE_PERFORMANCE

NORMATIVE_CAPACITY

OPTIONAL_FEATURES

OPTIONAL, ALGORITHMS

171

131

9

3

28

0.0(-)

0.1 (1.0)

0.0(-)

0.7 (1.0)

0.0(-)

0.0(-)

0.0 (0.0)

0.0 (-)

3.5 (5.0)

0.0(•)

0.2 (-)

0.3 (3.0)

0.2 (•)

4.0 (5.7)

0.2(-)

MAXNUMVALUE

ALL_CATEGORIES

NORMAT1VE_PERFORMANCE

NORMATIVE_CAPACITY

OPTIONAL_FEATURES

OPTIONAL, ALGORITHMS

171 204.7 (1.0) 402.4 (2.0) 460.5 (2.2)

131 96.2(1.0) 402.4 (4.2) 460.5 (4.6)

9 7.2(1.0) 4.9 (0.7) 11.8(1.6)

3 1.4(1.0) 11.3(8.1) 5.4 (3.9)

28 204.7(1.0) 289.9 (1.4) 358.0 (1.7)

INSTRUMENTATION: CPU TIME (SECONDS) — TOTALS

ARCH.CATEGORY
MEAN VALUE

ALL_CATEGORIES

NORMATIVE_PERFORMANCE

NORMATlVE_CAPACITY

OPTIONAL_FEATURES

OPTIONAL ALGORITHMS

* TESTS

171

131

9

3

28

RTNL

4.2(1.0)

3.3(1.0)

1.0(1.0)

1.1(1.0)

9.7 (1.0)

DEC

16.2(3.9)

17.8(5.4)

1.3(1.3)

8.4(7.7)

14.7(1.5)

VADS

0.2 (0.0)

0.2(0.1)

0.0 (0.0)

0.4 (0.3)

0.4 (0.0)

MINIMUM VALUE

ALL.CATEGORIES

NORMAT!VE_PERFORMANCE

NORMATIVE_CAPACITY

OPTIONAL_FEATURES

OPTIONAL ALGORITHMS

171

131

9

3

28

0.0(•)

0.1 (1.0)

0.0(-)

0.7 (1.0)

0.0 (-)

0.0(•)

0.0 (0.0)

0.0 (•)

3.5(5.1)

0.0 (•)

0.0 (•)

0.0 (0.0)

0.0(-)

0.0 (0.0)

0.0(-)

MAXIMUM VALUE

ALL_CATEGORIES

NORMATIVE_PERFORMANCE

NORMATlVE_CAPACITY

OPTIONAL_FEATURES

OPTIONAL_ALGORITHMS

171 201.6 (1.0) 402.0 (2.0)

131 94.7(1.0) 402.0 (4.2)

9 4.5(1.0 4.9) (1.0)

3 1.3(1.0) 11.3(8.7)

28 201.6(1.0) 289.5 (1.4)

4.6 (0.0)

4.6 (0.0)

0.0 (0.0)

1.0(0.8)

4.S (0.0)

Tabl* 6-3: instrumentation Results

CMU/SEI-88-TR-21 151

RUN-TIME: ELAPSED TIME (SECONDS) TOTALS

ARCH. CATEGORY
MEAN VALUE

AU_CATEGORIES

NORMATIVE_PERFORMANCE

NORMATIVE_CAPACITY

OPTIONAL_FEATURES

OPTIONAL_ALGORITHMS

#TESTS RTNL DEC VADS

171 15.8(1.0) 28.8(1.8) 36.7 (2.3)

131 14.8(1.0) 30.4 (2.0) 38.1 (2.6)

9 17.7(1.0) 13.7(0.8) 15.5(0.9)

3 12.8(1.0) 20.8(1.6) 18.2(1.4)

28 21.7(1.0) 27.6(1.3) 34.8(1.6)

MINIMUMJ/ALUE

ALL_CATEGORIES

NORMATIVE_PERFORMANCE

NORMATIVE_CAPACITY

OPT10NAL_FEATURES

OPTIONAL ALGORITHMS

171 11.2(1.0) 12.2(1.1) 12.8(1.1)

131 11.3(1.0) 114(1.1) 12.8(1.1)

9 11.3(1.0) 12.2(1.1) 13.2(1.2)

3 11.9(1.0) 15.7(1.3) 17.3(1.5)

28 11.2(1.0) 12.3(1.1) 13.2(1.2)

MAXMUM_VALUE

ALL_CATEGORIES

NORMATIVE_PERFORMANCE

NOR MATIVE_C AP ACITY

OPTION AL_FEATU RES

OPTIONAL, ALOOPJTHMS

RUN-TIME: CPU TIME (SECONDS)

ARCH. CATEGORY
MEAN VALUE

ALL.CATEGORIES

NORMATTVE_PERFORMANCE

NORMATlVE_CAPACITY

OPTIONAL_FEATURES

OPTIONAL ALGORITHMS

171 216.1(1.0) 415.2 (1.9) 473.8(2.2)

131 107.4(1.0) 415.2(3.9) 473.8 (4.4)

9 19.3(1.0) 17.3(0.9) 25.0(1.3)

3 13.7 (1.0) 23.9(1.7) 18.8(1.4)

28 216.1 (1.0) 302.3(1.4) 370.8(1.7)

TOTALS

#TESTS RTNL DEC VADS

171 5.1 (1.0) 17.0(3.3) 23.3 (4.6)

131 4.2 (1.0) 18.6(4.4) 25.8(6.1)

9 2.0(1.0) 1.9(1.0) 2.8(1.4)

3 2.1 (1.0) 9.5(4.5) 4.6 (12)

28 10.7(1.0) 15.4(1.4) 21.5(2.0)

MINIMUM_VALUS

ALL_CATEOORIES

NORMATIVE_PERFORMANCE

NORMATIVE_CAPACrTY

OPTIONAL.FEATURES

OPTIONAL ALGORITHMS

171 1.0(1.0)0.6(0.6) 0.5 (0.5)

131 1.0(1.0) 0.7 (0.7) 0.8 (0.8)

9 1.0(1.0) 0.6 (0.6) 0.5 (0.5)

3 1.7(1.0) 4.1 (2.4) £2(1.3)

28 1.0(1.0) 0.6 (0.6) 0.6 (0.6)

MAXMUM.VALUE

ALL_CATEQORIES

NORMATIVE_PERFORMANCE

NORMATIVE_CAPACITY

OPTIONAL_FEATURES

OPT10NAL_ALGORITHMS

171 202.6 (1.0) 402.8 (2.0) 459.9 (2.3)

131 95.7(1.0) 402.8 (4.2) 459.9 (4.8)

9 5.5(1.0) 5.5(1.0) 12.1 (2.2)

3 2.4(1.0) 12.8(5.3) 5.8(2.4)

28 202.6 (1.0) 290.2 (1.4) 357.6(1.6)

Tabta 6-4: Run-Tim* Results

152 CMU/SEI-88-TR-21

6.3.3. Measurement on 28 Optional Algorithms from ACEC Suit*

Rat.
S->C*

Rat. VMS/VAXSet

T->L"
UNIX/VADS ALS

MEAN VALUE

Elapaad Tim* (aac)

CPU Tim* (aac)

21.0

15.6

62.6

26.1

50.3

14.6

53.0

384

777.6

492.6

MINIMUM VALUE

Elapaad Tima

CPU r,•

3.2

62

285

•2.1

39.9

6.3

39.2

2E.3

677.3

426.9

MAXIMUM VALUE

Elapaad Tima

CPU TIME

65.0

45.2

1*5.0

62.1

99.7

39.3

81.1

61.8

126S.8

771.7

Tabl* 6-9: Compilation Tima

MEAN VALUE

Elapaad Tima (aac)

CPU Tima (MC)

Rat. Rat. VMS/VAXSat UNIXVADS

S->C T->L

10.3 10.3 15.0 21.7

9.7 9.7 14,7 0.4

ALS

21.4

20.8

MINIMUM VALUE

Elapaad Tuna

CPU Tima

0.0

0.0

0.0

0.0

0.0

0.0

0.2

0.0

0.0

0.0

MAXNUM VALUE

Elapaad Tima

CPU TIME

204.7 206.8

201.6 201.5

Tabla 6-6: Inatrumantation Quantity

289.9

289.5

358.0

4.5

386.6

386.0

* Rational Sourc* (paraad) to Codad Stata.

** ASCII Taxt to Linkad and Loadad via uaa of pragma Main.

•" Compilation tima indudaa compila and link tima.

CMU/SEI-S8-TR-21 153

Rat. Rat. VMS/VAXSet UNIX/VADS

S->C T->L

ALS

MEAN VALUE

Elapsed Tim* (se

CPU Tim. (sec)

21.7 22.4 27.6 34.8 45.6

10.7 10.8 15.4 21.5 26.6

MINIMUM VALUE

Elapsed Tim*

CPU Tim.

11.2 11.5 12.3 13.2 23.9

1.0 1.0 0.6 0.6 5.3

MAXIMUM VALUE

Elapaad Tims

CPU TIME

216.1 218.3 302.3 370.8 410.3

202.6 202.5 290.2 357.6 391.6

Table 6-7: Run Tims Quantity

akera2 AcKsrmann function (tsst)

akera3 Acksrmann function (pragma suppress)

bsrca2 BINARY SEARCH PKQ AT EXTREME LIMITS OF ITS INDEX TYPE: LOWER

bereaS BINARY SEARCH PKQ AT EXTREME LIMITS OF ITS INDEX TYPE: UPPER

chssa2 Char. String Search (teat)

chasa3 Char. String Search (pragma eupprsss)

facta2 RECURSIVE FACTORIAL FUNCTION

hadra2 HEAPSORT BENCHMARK DRIVE USES X0BMHSPK

imqa2 A FULL INTEGER QUEUE USING X0QUE PACKAGE

ieeqa2 GENERIC SEQUENCE MANIPULATION PACKAGE, 50 INTEGERS

minia2 MINIMAL PROGRAM WITH 2 STMT . 1 DECLARATION

mtcga2 EMPTY CHARACTER QUEUE USING XOOUE PACKAGE

mteaa2 EMPTY SET OF ENUMERATION TYPE USING X0SET PACKAGE

mtiaa2 EMPTY SET OF INTEGERS USING X0SET PACKAGE

pgqua2 PUT_END AND GOT_END WITH AN ENUMERATED TYPE USING X0QUE PKG

piala2 Pi Algorithm (test)

prcoa2 PRODUCER/CONSUMER PROBLEM

puzza2 PUZZLE

puzza3 PUZZLE (PRAGMA SUPPRESS)

randa2 RANDOM NUMBER GENERATOR

ahara2 READERS/WRITERS PROBLEM

si*va2 Sieve of Eratosthenes (tsst)

sorta2 INSERTION SORT USING XOSORT PACKAGE

aq10a2 PUT 10 INTEGERS IN SEQUENCE AND IF EMPTY USING X0SEQ PACKAGE

aqpga2 PUT AND GET 10 INTEGERS IN SEQUENCE USING X0SEQ PACKAGE

vpgsa2 VARIOUS PUTS AND GETS IN SEQUENCE USING X0SEQ PACKAGE

whsta2 WHETSTONE INSTRUCTIONS WITH FLOATS

whsta3 WHETSTONE INSTRUCTIONS WITH FLOATS (PRAGMA SUPPRESS)

TaMa 6-8: Optional Algorithms Programs

154 CMU/SEI-88-TR-21

6.3.4. Comparison of Executable Image Size

Byte Words Lines

LilAd*

MadAda

BigAda

1134 »1

9260 1101

47411 499S

Tabla $-9: Siza of Ad* Sourca Comparison Program!

10

HI
1436

Verdix Ada4

(kbytes)
Alsys 3.2s

(kbytes)
Rational8

(kbytes)

UlAda axacutabla

ul Ada program library

M
76

120

'25

S3

N/A

MadAda axacutabla

MadAda program library

12

•29

120

195

94

N/A

BigAda axacutabla

BigAda program library

81 136

191

249

N/A

Tabas 6-10: Comparison of Exacutabla and Program Library Sizaa

"Vardix Ada, VADS 5, MieroVAX IIAJLTRIX 1.2

'Alaya 3.2, Sun 3/140, OS 3.2

'Rational, Modal 200-20, Rational Environment DoltaO

CMU/SEI-88-TR-21 155

6.4. Prototype ACEC Analysis

When compiling from Rational source code state, the Rational compiler was 1.8 times faster than
VMS/VAXSet and 2.1 times faster than UNIX/VADS in terms of elapsed time on an average
across 173 ACEC Suite Ada programs. Compiling from Rational source code state does provide
an advantage to the Rational compiler, as parsing has already occurred. However, it is not an
unreasonable comparison as source state is easily achieved using the Ada Object Editor. Also,
incremental compilation techniques prevent the need to re-parse an Ada program once it has
been parsed successfully.

An anomalous figure for compile time is presented for the maximum value for the Normative
Capacity Tests. The elapsed time to compile is 1760.1 seconds. The particular ACEC test which
required such a great amount of time for compilation was Centb2, described in the User's Manual
for the Prototype ACEC as:

CENTB2 CHECKS ENUMERATION TYPES UP TO 2000 ELEMENTS

Procedure Centb2 consists of 35 lines of Ada code which rely on package compp for the defini-
tion of several enumeration types. The compilation of Centb2 requires only 49.9 seconds of wall
clock time. However, this must be adjusted for the compilation time needed for package
compp—1710.2 seconds. Package compp consists of the definition of four types. The four
types each enumerate 500, 1000, 1500, and 2000 elements. Compp is clearly designed to
stress a compiler's ability to deal with the individual language feature of enumerated types. If the
time to compile Centb2 and compp is discarded, the Maximum for elapsed time for the Norma-
tive Capacity Tests is 258.0 seconds, which falls between the observed maximum for the Norma-
tive Capacity Tests for DEC and VADS. It was due to non-benchmark style programs such as
Centb2 that compilation time from ASCII text files was considered only on the 28 Optional Algo-
rithms.

When compiling from ASCII text files, the Rational compiler was 1.2 times slower than
VMS/VAXSet and UNIX/VADS in terms of elapsed time, across 28 benchmark style programs
from the ACEC suite. This compilation time includes parsing and "pretty-printing," as well as
machine code production. This result is significant to the porting of large Ada systems to be
maintained on the Rational Environment. The initial compilation of such a system may take
slightly longer than would be expected for the other evaluated APSEs.

156 CMU/SEI-88-TR-21

The instrumentation results represent the time to execute the body of the Ada programs in the

ACEC suite, excluding time required for elaboration. The execution of the programs on the
Rational Environment was on the average faster than the execution times seen on DEC and

VADS. This speed advantage may be attributed to the architecture of the R1000, which was
designed to accommodate Ada.

The runtime results represent the time to elaborate and execute the body of the Ada programs in
the ACEC suite. Here again, the Rational Environment was faster than DEC and VADS in terms

of elapsed time. The speed advantage was not as great as that shown by the instrumentation

results.

When UlAda, MedAda, and BlgAda are in coded state on the Rational Environment, they re-
quire more space than the same executable images produced by Verdix Ada running on a
MicroVAX II with ULTRIX 1.2. However, when program library support is taken into account, the
Rational Environment requires less space than Verdix Ada and VADS 5. The Rational Environ-
ment coded state programs require slightly less storage space than the Alsys 3.2 compiler-
generated executable images. The space required for the coded state programs and Rational
Environment directories is much less than the space required by the Alsys 3.2 compiler program
library. The Rational Environment maintains program library information in its directory structure.

It is not attempting to layer Ada program libraries on top of an external operating system and
capitalizes on this advantage.

CMU/SEI-88-TR-21 157

158 CMU/SEI-88-TR-21

7. Cross Environment Performance Comparison
The following presents questions from each experiment category, with a summary of answers

from previous Ada environment evaluations and the Rational Environment evaluation. Each
question is labeled by the question's number and the experiment section in which it appeared.

• Configuration Management and Versions Control - CM

• System Management - SM

• Design and Development - DD

The numeric results of the cross-environment performance comparison show that the Rational
Environment is a highly interactive Ada development environment. Most commonly used com-
mands have a quick system response, often an elapsed time of under two seconds. Disk utili-

zation for Ada units and directories is on par with the other environments evaluated.

The first value presented (VMS/ALS) is from an evaluation of the SofTech Ada Language System
Version 3.0 developed by the Army and designed to be retargetable and rehostable. The ALS is

hosted on DEC'S VMS operating system (Version 4.2 of MicroVMS) and was run on a hardware
configuration consisting of a Micro VAX II with 9 megabytes of main memory and disk space
consisting of three RD53 disk drives (213 megabytes).

The second value presented (VMS/VAXSet) is from an evaluation of the DEC product VAX Ada
(Version 1.2) and five additional tools collectively referred to as VAXSet. VAX Ada and VAXSet
were run on Version 4.2 of MicroVMS. The hardware consisted of a Micro VAX II with 6 mega-

bytes of main memory and 102 megabytes of disk space (one 31 megabyte RD52 disk drive and
one 71 megabyte RD53 drive).

The third value presented (UNIX/VADS) is from an evaluation of the Verdix Ada Development
System (VADS, Version 5.1) running on ULTRIX, DEC'S version of UNIX (Version 1.2). The tests

were run on a MicroVAX II configured with 6 megabytes of memory and 202 megabytes of disk

space (one 31 megabyte RD52 drive and one 171 megabyte Fujitsu drive).

The fourth value presented is from the Rational Environment Evaluation and labeled "Rational."

The Rational equipment used is described in the introduction to this report.

VMS/ALS VMS/VAXSet UNIX/VADS Rational

CM1.2 Elapsed time for performing a system build operation.

1937.65 MO 205.04 169.35 43.50 (aourc* -> codad)
85.64 (codad -> loadad)

CM1.7 Elapsed time for creating a CM file element.

13.64 sac 5.61 1.42 2.13
•is*: 512 bytas (av«.)512 (ava.)225 3072 bytoa

CM1.8 Elapsed time for performing baseline operation.

initial 212.93 sac 90.23 42.95 175.85 (all subsystares}

CMU/SEI-88-TR-21 159

B02 225.41 92.41 45.45
B03 226.3 95.10 45.10
B04 223.55 95.33 46.55
VI. 0 207.15 101.45 47.05

41.15 (only VT)
no ralaasa naadad
38.13 (only SM)

201.51 (all subsystems)
NOTE: in config-only mod*:
42.86 sac to ralaasa all

subsystems

CM 1.9 Files since increase caused by baseline inclusion.

no increase negligible 90 bytas 100,640 to ralaasa SM
483,609 to ralaasa all subsysts
NOTE: in config only mod*:
51,853 to ralaasa all subsyatt

CM1.22 Elapsed time for fetching a CM element.

(non-variant)
14.46 s< 4.46 0.82 1.37 (check out command)

CM 1.23 Elapsed time for creating a variant of a CM element

aim_Ada 26.45 sac 12.06 4.23
vt_body 48.28 12.38 4.10
VTQ spac Ada

" 48.81 12.25 4.40
vm_body Ada

48.13 12.23 3.55

1.00
1.12

1.10

1.16

CM1.24 Elapsed time for fetching a variant of a CM element

aim_Ada 28.27 sac 4.95 0.98
vt body Ada

28.47 5.26 0.90
vm_apac_Ada

~ 27.79 4.91 0.90
va body Ada

28.52 5.05 0.95

not applicabl*
(saa CM1.23)

CM1.25 Elapsed time for reserving a variant of a CM element

aim_Ada 14.19 aac 5.60 1.56
vt_body_Ada

• 15.75 5.56 2.00
vm_ap*c Ada

15.66 5.54 1.95
vm_body_Ada

14.93 5.53 1.25

not applicable
(saa CM1.26)

CM1.26 Elapsed time for replacing a variant of a CM elment

aim_Ada 19.61 aac 6.54 3.85
vt_body_Ada

~ 19.23 6.75 2.65
vm_«pac_Ada

19.03 6.63 3.85
vm_body_Ada

" 19.38 6.69 2.70

0.96 (check in command)

1.04

1.03

1.05

CM1.27 File size increase caused by successive version.

107 bytaa
100%

+ or - chang*
majority:
no chang*
soma: 1 block

six* of chang*
loga and daltas
storad in Ik bytas
chunk* in configuration

160 CMU/SEI-88-TR-21

da.taba.aa

CM 1.28 File size increase caused by variant version.

100%
+ or - chingt

majority: (av«)
no change 111 bytes
<on»: 1 block

Maka_Path, with tokens
severed, for variant
varaiona of main:
sm_toster 77518 bytes
cli_taatar 77519 bytaa
vt_taatar 77516 bytaa

CM 1.40 Elapsed time of merging variant versions of a CM element.

main.Ada N/A
vt body.Ada

N/A

12.54

12.93

sac 4.25

3.75

v» ip«c.Ada
N/A

Vm body.Ada
N/A 3

13.35

69 sac

3.75

3.03

12 91 3.70

6.38 sac (average;

no marga naadad

no marga naadad

Not Supported

no marga naadad

CM1.41 File size increase caused by merge operation.

N/A majority:
no change

1 block

(ava)
126 bytaa some marges not naadad

for main.Ada:
lat marga 2572 byte incraaaa
2nd marga 5078 byte incraaaa
3rd marga 6358 byte incraaaa

total 14008 byte for
merging variant back into
main

CM1.45 Elapsed time of reserving a CM element.

(non-variant) (non-variant) (non-variant)
14.21 aac 5.78 0.82 not applicable

CM1.46 Elapsed time of replacing a CM element.

(non-variant) (non-variant) (non-variant)
19.36 aac 6.94 2.70 not applicable

CM2.2 Elapsed time for displaying history Information for a CM element.

not directly supported 0.33 aac 3.55 33.03 for all unita

(approx. 2 aac par unit)

CM2.4 Elapsed time for rebuilding an earlier baseline system.

3656.89 aac 325.22 188.15 (from config. only atatua)
for build 133.81 aac
for recompile

24.10 aac

TOTAL: 157.91 sac

CM2.8 Elapsed time for deleting a CM element.

CMU/SEI-88-TR-21 161

not parfoim«d 5.44 sac N/A (making uncontrolled)
1.71 MO

SM2.2 Elapsed time for creating a user account group.

3.52 NO 3.44 5.75 2.49

SM2.3 File size increase caused by creating user account group.

majority:
no changa
aoma: pradafinad
chunks (ag. 3
blocks)

•an* as
VMS/ALS

10 bytaa
(aiza of group
nama)

1 byta
(othar costs
could not be
maasurad)

SM2.5 Elapsed time for creating a new user account.

3.20 aac 3.05 20.20 6.48

SM2.6 File size increase caused by creating a new user account.

majority:
no changa VMS/ALS
aoma: pradafinad
chunks (ag. 3
blocks)

56 bytaa
(aiza of nw
uaar nama and
full nama)

7473 bytaa
(aiza of ampty homa
world)

SM2.12 Elapsed time for adding a user account to a user group.

3.22 aac 3.18 includad in SM2.5 0.07 aac

SM2.13 File size Increase caused by adding a user account to a user group.
majority:
no changa
aoma: pradafinad
chunks (ag. 3
blocks)

sama as 5 bytaa 2 bytaa
VMS/ALS (ona byta mora (othar costs

than siza of usar could not ba
nama baing addad) maasurad)

SM2.16 Elapsed time for copying old account characteristics Into a new account.

3.79 sac 3.74 Not Supportad tima to axacuta command
that craatas a usar
with soma dafault
charactaristics: 1.77 s«

SM2.17 File size Increase caused by copying old account information Into new account.

N/A majority:
no changa
soma: pradafinad
chunks (ag. 3
blocks)

sama as
VMS/ALS

7473 bytas
(ampty homa world)

SM2.20 Elapsed time for disabling logins for a user account.

N/A N/A N/A 1.77 sac

SM2.24 Elapsed time for displaying user account characteristics.

2.64 sac 3.11 0.33 (display group)
0.03 aac

SM2.27 Elapsed time for modifying a user account's characteristics.

162 CMU/SEI-88-TR-21

2.84 aac 2.75 Not Supported 0.03 (change password)

SM2.34 Elapsed time for removing a user account from a user group.

3.69 sac 3.03 Not Supported 0.11 aac

SM2.35 File size decrease caused by removing a user account to a user group.

no d«crua« no dacraaaa dacraaaa by langth 1 byte dacraaaa
of uaaz name + 1
byta

SM2.38 Elapsed time for deleting a user account.

3.19 aac 3.03 15.80 dalata accaaa: 1.81 aac
dalata homa world:

1.10 aac

SM2.39 File size decrease caused by deleting a new user account.

no dacraaaa no dacraaaa 55 bytaa
(aize of uaar nama
and full nama)

7556 bytaa

DD6 What are the CPU and clock times for creating a program library?

Elapaad:
17 min 17 sac

CPU: 12 min 26 sac
13.00 sac
2.85 sac

3.2 sac
0.1 sac

1.73 sac
0.70 sac

DD7 What are the space utilization ramifications of creating a program library?

1 block
(la 512 bytaa)

115 blocks 1.3 blocks
(ia 690 bytaa)

14.5 blocks
(ia 7425 bytaai

DD17 What are the CPU and elapsed times for translating a compilation unit into a specified program

library?

Vactor Managamant Spac:
Elapaad: (aourca to codad)

1 min 19 aac 11 38 sac 9 0 sac 5.52 sac
CPU: 41 aac 4 11 sac 1 0 sac 2.48 sac
Matrix Managamant Spac:
Elapaad:

1 min 27 sac 11 91 sac 6 9 sac 3.00 sac
CPU: 48 sac 5 94 sac 0 7 sac 1.37 sac

DD18 What are the space utilization ramifications of translating a compilation unit Into a specified
program library?

Vactor_Managamant Sourca:
1024 bytaa 1024 bytaa

(optional)
Vactor_Managamant Objact Coda:

81,920 bytaa 4608 bytaa 6751 bytaa

Matrix_Managamant Sourca:
1024 bytaa 1024 bytaa

(optional)
Matrix_Management Objact Coda:

65,536 bytaa 5120 bytaa (not available)

library spaca: 125 bytaa
objact size: 13281 bytaa

library spaca: 125 bytaa
objact siza: 11365 bytaa

DD22 What are the CPU and elapsed times for translating a compilation unit into a specified program

library?

CMU/SEI-88-TR-21 163

Vactor_Man«gamant body:
Elapsad: (source to codad)

1 min 49 sac 15.11 sac 12.2 sac 6.13 sac
CPU: 1 min 6 sac 8.63 sac 4.9 sac 3.09 sac

DD26 What are the CPU and elapsed times necessary for creating an executable module?

Elapaad:
7 min 45 sac 23.86 sac 25.1 sac N/A

CPU: 4 min 50 sac 1.53 sac 10.5 sac

DD27 What are the space utilization ramifications of creating an executable module?

an additional
151,040 bytas 30,208 bytas 68,127 bytas N/A

DD32 What are the space utilization ramifications of browsing a compilation unit?

no incraasa no incraasa browsing not no incraasa
supportad

164 CMU7SEI-88-TR-21

Appendix A: Size and Time Reporting Procedures
The following procedures were used to obtain the instrumentation data for the Configuration

Management/Version Control Experiments and the System Management Experiments. Each
routine is followed by a short explanation of its use.

A.1. Specification Record Size'Spec

Procedure Record Size has three parameters: Message, Object, and Recursive. Message

can be any string which will be reprinted with the size figures and should be used to annotate the
resulting log. Object is the object whose disk utilization in being measured and reported.
Recursive indicates whether subobjects of the Unit should be included in the size measurement.

If Recursive is True, then the object's space utilization plus sub-objects' space utilization will be
reported. If Recursive is false, then only the space utilization of that object itself will be reported.

prooadur* Racord Siz« (M«<a*g« : String :» "";
Obj«ct» : String :- "";
R»cur«iv« : Bool««n :» Trua);

CMU/SEI-88-TR-21 165

A.2. Procedure RecordSize'Body
with Dir«ctory_Tool«, Io;
procedure R»oord_Siz« (Massaga : String :• "";

Objects : String := "";
Recursive : Boolean :» True) is

package Dt renames Directory_Tools;
package Stat renames Directory_Tools.Statistics;
Orig_Obj, Obj : Dt.Object.Handle;
Itar : Dt.Objact.Iterator;
Sum_Ob jact_Siza, Sum_Total_Sizo : Long_Integer :• 0;
Answer2 : String (1 .. 10) ;

begin
if Recursive than

Itar :«• Dt .Naming. Resolution (Objects £ "??");
alsa

Itar :• Dt.Naming.Resolution (Objects);

and if ;
Orig_Obj :- Dt.Objact.Valua (Itar);
while not Dt.Object.Dona (Itar) loop

Obj := Dt.Object.Value (Itar);
Sum_Object_Size :» Sum_Total_Size -I- Stat. Ob ject_Size (Obj) / 8;
Sum_Total_Size :» Sum_Total_Size + Stat.Total_Size (Obj) / 8;
Dt.Object.Next (Itar);

and loop;
if Recursive than

Answar2 : = "everything";
alsa

Answer2 :- "itself

and if;

declare
Answarl : constant String :• Dt.Naming.Simpla_Name (Orig_Obj) £
Answer3 : constant String :=

" object_aize —> " £ Long_Integer'Image (Sum_Object_Size) S
", total_size «> " £ Long_Integer' Image (Sum_Total_Size);

begin

Io.Put_Line (Message);
Io.Put_Line (Answarl £ Answer2 £ Answer3) ;

end;
end Record Size;

A.3. Using Record Size

RecordSize'Spec and Record_Slze'Body can be placed in the experimenter's home directory
and compiled and executed from the home directory. To execute the procedure:

Open a command, window
<Create Command>
Enter
Record_Size
<Complt>
Record_Size(Message => "",

Objects => "";
Recursive => True);

Supply a message, if desired, to annotate the log and provide the full pathname to the object and

166 CMU/SEI-88-TR-21

the object named for the value of Objects. If a measurement of only the object and not its
sub-objects is desired, change the value of Recursive to False.

Execute the command
<Prooaot>

The message, followed by the object name and its space utilization requirements in bytes, is
reported to the standard output window.

A.4. Specification Timeit'Spec

Procedure Tlmeit requires no parameters.
procadura Timait;

A.5. Procedure Timeit'Body
with Compilation, Cmvc, Taxt_Io, Tima_Utilitiaa , Syatam_Otilitiaa;
procadura Timait ia

— variablaa for timing

B«gin_Tim« : Duration :• 0.0;
End_Tima : Duration :» 0.0;

Bagin_Cpu_Tima : Duration : — 0.0;
End_Cpu_Tima : Duration :« 0.0;

-- output for timings
packaga Duration_Xo ia naw Taxt_Io.Fixad_Io (Duration);

bagin
Taxt_Io.Put_Lina (" CLOCK CPD");

— racord tha clock tuna ainca syatam boot fi cpu tima ainca job atart
Bagin_Tima :- Syatam_Dtilitiaa.Elapaad;
Bagin_Cpu_Tima := Syatam_Otilitiaa.Cpu;

— PLACE COMMAND TO TIME HERE:
Cmvc. Ralaaaa (From_Working_Viaw =>

" !uitri. experimenter. cm_axparimant. vt. rav2_working" ,
Ralaaaa_Naraa => "<AOTO_GENERATE>" ,
Laval »> 0,
Viawa_To_Import •> "<INHERIT_IMPORTS>",
Craata_Configuration_Only => Falaa,
Compila_Tha_Viaw -> Trua,
Coal => Compilation.Codad,
Commanta -> "",
Work_Ordar -> "<DEFAOLT>",
Voluma »> 0,
Raaponaa »> "<PROFILE>");

End_Cpu_Tima := Syatam_Otilitiaa.Cpu;
End_Time :» Syatam_Otilitia«.Elapaad;

Duration_Io.Put (End_Tima - B«gin_Tima, 4, 2, 0);
Taxt_Io.Put (" ");
Duration_Io.Put (End_Cpu_Tima - Bagin_Cpu_Tima, 4, 2, 0);

and Timait;

CMU/SEI-88-TR-21 167

A.6. Using Timeit

Procedure Timeit is shown here set up to time the Cmvc.Release command. The procedure

Timeit can be placed in the experimenter's home directory and compiled. In order to time any
command or series of commands, the Timeit procedure can be modified using the incremental

editing possible with the Rational Environment. Following is a transcript to change the Timeit
procedure after it has been promoted to coded state in the experimenter's home directory.

Make Timeit'body the current context.
<Install Unit>
Select the statement appearing below
the comment.
PLACE COMMAND TO TIME HERE:
<Edit>
An edit window will open; replace
the Cmvc.Release command with
the new command to be timed; no
parameters need be typed at this
point.
<Format>
Select the new command.
<Complt>

The parameters and their default values will be supplied. Change the default values as needed.

If there is an error message "No completion for X," where X is the name of the command in-
serted, its package must be added to the with clause at the beginning of the program. Do this by

moving the cursor to the line after the existing with clause. Type <Object> I, then in the edit
window, type "With PACKAGE," where PACKAGE is the name of the package in which the

command is defined. Type <Promot> to return to the edit window containing the command to be
completed, and retype <Complt>, supplying any needed parameters.

Place the contents of the edit window
back into the body.
<Promot>
Return the entire body to coded
state.
<Promot>

The procedure Timeit can then be executed from a command window. The results of the timeit

command, and any messages from the timed procedure, will appear in the standard output win-
dow.

168 CMU/SEI-88-TR-21

Appendix B: Design and Development Instrumentation
Procedures
The library creation, file copy, and Ada object promotion commands have been incorporated into
the following procedures that measure them by recording time and disk space utilization. Section
B.12 describes how they can be used when executing the experiment instantiation in Chapter 4.
In the following program segments, experimenter is used in directory names to indicate where a
user may insert his own user name.

B.1. Package Kluge Stuff

The package Kluge_Stuff defines some common types and constants. The type
Selection Methods allows a user to perform an operation on an object that is either selected by
having the cursor in its image or by selecting the object (<Object> Left Arrow) in its enclosing
directory. It also sets up a file to serve as a place to store timing information taken at the
beginning of an operation to be used with timing information taken at the end of an operation.

package Kluga_Stuff ia

typa Salaction_Mathoda ia (Curaor_In_Imaga,
Highlight_In_Dir«ctory);

Tha_Naroa : constant String :«
" ! Oaara . BXpoiimantgr. aocp_lib. info_fila" ;

typa Info ia
itcord

Salaction_M«thod : Kluga_Stuff.S«l«ction_M«thods;
Libraz-y_Siza_Bafora_Pi:omotion : Intagar;

and racord;

and Kluga_Stuff;

B.2. Specification TimedCode'Spec

The procedure to initiate and time the compilation of an Ada unit requires no parameters as
indicated by its one line specification.

procadura Timad_Coda;

B.3. Procedure TimedCode'Body

Package Tlmed_Code collects the size of the enclosing library and the time required to compile
an Ada Object.

CMU/SEI-88-TR-21 169

— Ada, Ada_Objact_Ed.itor, Common and Object_Editor ait Rational
— Environment packages.

with Common, Direct_Io, Kluga_Stuff, 3iza_0f, Iaxt_Io, Timing_Log,
Timing, Ada, Ada_0bject_Editor, Object_Editor;

procedure Timad_Coda ia

Library_Size_Befora_Promotion : Intagar :• 0;
— initialized by unit name function

Salection_Method :
Kluge_Stuff.Selecti on_Methods;

— The following declarations are required to paaa information
-- generated by thia procedure to
— Finiah_Coding_Inatrumentation. Thia kluge ia necessitated
— by a bug in the Rational Environment that prevents timed
— coda from reading library aiza or unit aiza after promoting
— a unit.

package Info_Io ia new Direct_Io (Kluge_Stuff.Info);
Tha_Pila : Info_Io.File_Typa;
The_Info : Kluga_Stuff.Info;

The Dnit_Name function haa tha aide affect of aatting
Selection_Method.
Selection_Method in turn ia uaad to determine how tha
library context of tha unit being promoted ia referenced.
If cursor ia in image than tha enclosing context apecial
character '*' ia uaad. If the unit it highlighted than the
currant context atring "[]" ia uaad.

Tha library aiza function depends on tha aide affect of
unit_name which must be called before library_aiza.

function 0nit_Nama return String ia
package Aoe renames Ada_Objact_Editor;
package Oa renames Object_Editor;

begin

if Aoe.Image_Name - "##*Unknown###" then
Selection_Method =

Kluge_Stuff.Highlight_In_Directory;
return Oe.Get_Name (Oe.Selection);

alaa
Selection_M«thod :• Kluge_Stuff.Cursor In Image;
return Aoe.Image_Name;

end if;

end Unit Name;

function Library_Size return Natural ia
begin

caaa Selection_Method ia
whan Kluge_Stuff.Curaor_In_Imaga »>

return Size_Of ("A");
when Kluge_3tuff.Bighlight_In_Directory =>

return Siza_Of ("[]");
end caaa;

end Library_Size;

170 CMU/SEI-88-TR-21

bagin

T imi ng_Log . Appan d_L i na ;
Txnu.ng_Log.Appand_Lina ("Coding unit: " £ Unit_Nama);
Library_Siza_B*fora_Promotion :» Library_Siza;
Timing_Log . Appand_Lina

("Library aiza: " & Intagar'Imaga
(Li-brairy_Sxza_Baf ora_Promotion) £

" bafora promotion.") ;

Timing. Ran at ;
Ada.CodaJJnit;
Timing_Log.Appand Lin* (

" Clock tima: " & Timing.Wall_Tima t
" CPU tima:" £ Timing.Cpu);

Timing_Log.Cloaa_Log;

— Stora data that will ba pickad up by
— £iniah_coding_inatrum*ntation.

Tha_Info.Sal*ction_Mathod : — Salaction_Mathod;
Tha_In£o.Library_Siza_Bafora_Promotion :•

Li_brary_Siza_Bafora_Promotion;
Info_Io.Craata

(Fila •> Th*_Fila,
Mod* »> In£o_Io.Out_Fila,
Mama => Kl-jga_Stuf f . Tha_N«ma,
Form •> "") ;

In£o_Io.Writ*
(Tha_Fila, Tha_Info);

Info_Io.Cloaa (Tha_Fila);

and Timad Coda;

B.4. Specification Finish_CodingJnstrumentationSpec

The package specification for Finish Codinglnstrumentation shows that the body can take

one parameter. When Both is set to true, the size of both the package specification and body will
be recorded. The default is false, which causes the recording of the size of just the indicated Ada
Unit (either the Ada Unit is selected, or the cursor currently resides in the Ada Unit's image.)

procadura Fini«h_Coding_In»trum*ntation (Both : in Boolaan :• Falsa);

B.5. Procedure Finish_Coding_lnstrumentation'Body

An explanation of FinishCodingJnstrumentation can be found in the comments in the code.

CMU/SEI-88-TR-21 171

with Ada, Ada_Ob;]ect_Editor, Common, Dir«ct_Io, Kluge_Stuff,
Ob ject_Editor, Size_Of, Text_Io, Timing, Ti mi ng_Log;

— This procadura logs the post promotion size of eithar a spec, a
— body, or both. Both should ba sat to trua only whan compiling
— a main prooadura body for which a spac doas not exist. In this
— casa tha systam automatically ganaratas a spac, which consumas
— objact and library spaca. Tha program spac or body is indicatad by
— aithar tha cursor's baing prasant in an imaga of tha spac or body, or by
— tha program spac or body salactad with tha cursor basida, in its parant
— directory listing. Tha parant directory listing must ba in standard format,
— that is, with (proc_body) or (proc_spac) indicatad.

prooadura Finish_Coding_Instrumentation (Both : in Boolaan := Falsa) is

— Tha following daclarations ara required to raad information
— ganaratad by Timad_Coda. This Icluga is nacassitatad by a
— bug in tha Rational Environment that pravants library and
— objact sizes from baing raad aftar promotion by a procadura
— that promotes an objact.

package Info_Io is naw Diract_Io (Kluga_Stuff.Info);

The_Fila : Info_Io.Fila_Typa; —Name of fila containing information
Tha_Info : Kluga_Stuff.Info; —Record that holds information

— Tha following ara measured by this prooadura
Library_Size_After_Promotion, Onit_Siza_After_Promotion :

Intagar :•» 0;

— Functions Unit_Name and Library_Siza ara clonad from
— Timad_Coda.
function Onit_Mama return String is

—Returns tha name of tha unit that was promoted and is to ba measured.

bagin
— Procadura Timad_Coda determined how tha usar was indicating tha
— coda to ba promoted, and recorded it.
casa The_Info.Selection_Method is

— Whan tha coda is indicatad by tha cursor's baing in a window
— containing tha fila's imaga, than tha file's naaa can ba
— determined by a call to Image_Name.
whan Kluga_Stuff.Cursor_In_Image =>

return Ada_Objact_Editor.Imaga_Nama;

— Whan tha coda is indicatad by baing highlighted in tha
— directory listing, than tha fila's name can ba determined
-- by a call to Get_Name.

whan Kluge_Stuff.Highlight_In_Diractory =>
return Object_Editor.Get_Name (Object_Editor.Selection);

and casa;
and Dnit_Name;

function Library_Size return Natural is
— Determine tha siza of tha object's parant library,

bagin
— Depending on how tha usar has indicatad tha objact, determine
— tha siza of tha parant library.

casa Tha_Info.Salaction_Mathod is

whan Kluga_Stuff.Cursor_In_Imaga «>
return Siza_Of ("*");

whan Kluga_Stuff.Highlight_In_Diractory =>

172 CMU/SEI-88-TR-21

return Size_Of <"[]");

and caac;
•nd Library_Size;

— Unit size is naaaurad only after promotion because size of
— objact raturnad by tha Size Of function appears to ba
— random if tha objact has never baan inatallad.
function Onit_Size raturn Natural ia

-- Maaauraa tha aiza in bytaa of tha aalactad objact or objacta if both
— a apac and a body were compiled,

begin

caaa Tha_Info.Selection_Mathod ia

whan Kluge_Stuff.Curaor_In_Image »>
if Both than

— Whan in a body tha currant context symbol
— "[]" ia interpreted aa rafarancing tha
-- apac. Tha image name returned by
— Ada_Object_Editor always haa a apac or body,
raturn Siza_Of ("[]") +

Siza_Of (Ada_ObjectJBditor.Image_Name),-
alaa

raturn Size_Of (Ada_Ob ject_Editor . Inagajlame) ;
and if;

— Whan tha objact ia aalactad by highlighting it in tha
— parent directory, tha Objact Editor only returns a name,
— it does not raturn 'apac or 'body types, which tha Size_Of
— function naada in order to locate tha proper objact to
— measure. Tha taxt manipulation balow raliaa on tha directory
— listing to ba in standard format, and actually drags all of
— tha characters off tha highlighted lines and searches for
— (proc_body) or (proc_spec) in order to gat tha proper
— measurement.

whan Kluge_Stuff.Highlight_In_Directory =>

Tricky_Text_Manipulation:
declare

Big_String :
String (1 .. 120) :- (others -> ' ');

— Will hold text grabbed off of highlighted line.
Start_Of_Type : Natural :» 0; —holds location of
— Open paran. of the paren's. around the object

— typ*-
Body_Selectad : Boolean; —true if objact is a
— Package body, falsa if object is a package spec.

begin

-- Grab highlighted text and stuff in Big String.
Big_String

(1 .. Objact_Editor.Gat_Taxt
(Object_Editor.Selection) 'Last) :-

Objact_Editor.Get_Text (Object_Editor.Selection)
--Locate open paran. in selected text,
for I in Big_String'Range loop

if Big_String (I) » ' (' then
Start_Of_Type :- I;
exit;

end if;
end loop;

— Find out what's selected.
Body_Selected :=

CMU/SEI-88-TR-21 173

Big_String
(Start_Of_Typa + 1 .. Start_Of_Typa + 9)

• "Proc_Body";

if Both than
— Print out notica that both a body and apac
— ara baing maaaurad.
Timing_Log.Appand_Lina

("BOTH 'body and 'apac of " £ Unit_Name £
" aizad and compilation timad");

raturn
Siza_Of (0nit_Nama

s "body") +
Siza_Of (Dnit_Nama

S "apac");
alaa

— Only aiza of aalactad taxt ia
— daairad, ba it a body or a apac.
if Body_Salactad than

— Print out notica that juat a body ia
— baing maaaurad.
Timing_Log.Appand_Lina

("ONLY 'body of " £ Unit_Nama £
" aizad and compilation timad");

raturn
Siza_Of (Unit_Nama £

"body");
alaa

— Print out notica that juat a apac ia
— baing maaaurad.
Timing_Log.Appand_Lina

("ONLY 'apac of " £ Unit_Nama £
" aizad and compilation timad");

raturn
Siza_Of (OnitJHama £ "apac");

and if;
and if;

and Tricky_Taxt_Hanipulation;
and caaa;

and Unit Siza;

bagin

— Ratriava data atorad by Timad Coda (aalaction mathod and library
— aiza bafora promotion of tha objact.
Info_Io.Opan (Tha_Fila, Info_Io.In_Fila,

Kluga_Stuff.Tha_Nama);
Info_Io.Raad (Tha_Fila, Tha_Info);
Info_Io.Dalata (Tha_Fila);

'- Obtain aftar promotion data on aiza of tha library.
Library_Siza_Aftar_Promotion :• Library_Siza;

— Sat aiza of unit aftar promotion.
Onit_Siza_Aftar_Promotion :» Unit_3iza;

— Racord tha information in log fila.
Timing_Log.Appand_Lina ("Library Siza Aftar Promotion: " £

Intagar'Imaga (Library_Siza_Aftar_Promotion));

Timing_Log.Appand_Lina ("Unit Siza Aftar Promotion: " £
Intagar'Imaga (Unit_Siza_Aftar_Promotion));

Timing_Log.Appand_Lina
("Library apaca uaad by coding " £
Onit_Nama £
" ia " £ Intagar'Imaga

174 CMU/SEI-88-TR-21

(Library_Sixa_Aftar_Proiaotion -
The_Info.Library_Sij:a_Before_JPromotion)) ,

— all dona, the log
Timing_Log. Close_Log ,-

and Fimsh_Coding_Inatrum«nt«tion;

B.6. Specification TimedDirectory'Spec

The package specification for Tlmed_Directory indicates that it takes one parameter, the name

of the directory to be created.
— Times tha cnation of a directory and calculates tha spaca
-- required for tha nawly created directory and tha space used by
-- It* parent directory to store information about it.
-- Records tha information in file designated by file read by
-- Timing_log.ratri evo_current_log_name.
procadura Timad_Directory (Diractory_Name : String :• "");

B.7. Procedure Timed_Directory'Body

The package body Tlmed_Dlrectory times the creation of a directory. The directory is created
as an object in the closest enclosing context that is either a world or directory. It is given the
name passed in the Directory Name parameter.

CMU/SEI-88-TR-21 175

— Ada is a Rational Environment package that uaed to contain procedure
— Ada.Craata_Diractory. Ada.Craata_Oiractory ia now found in
— !Commands.Library.Cr«at«_Dir»ctory (LM-222) for Operating Syatam Version
— Delta.

—with Size_Of, Timing_Log, Timing, Ada;
with Size_Of, Timing_Log, Timing, Library;

procedure Timed_Directory (Directory_Name : String :• "") ia

— Times the creation of directory paaaed aa quoted string, alao
— calculates the apace uaed by the newly created directory; and the
— apace required by its parent to store information about it; it
— records the information in file designated by file read by
— Timing_log.retrieve_current_log_name.

Size_Before_Creation, — Size of parent directory before
— creation of requested directory in bytes.

Size_After_Creation : Integer; — Size pf parent directory after creation
— of requested directory in bytes.

begin

— The string "[]" indicates the current context, which is
— the library in which the directory ia to be created.
Size_Before_Creation :«Size_Of ("[]");

— Send blank line to log file.
Timing_Log.Append_Line;

— Record name of directory to be created.
Timing_Log.Append_Line ("Creating directory: "

£ Directory_Hame);

— Record cpu time and wall clock time before creation of directory
— invoked.
Timing.Reset;

— Create the requested directory.
Library.Create_Directory (Direotory_Name);

-- Calculate and record the CPU and Wall Clock time elapsed in the
— creation of the directory in seconds.
Timing_Log.Append_Line ("Clock time (sec): " C Timing.Wall_Time £

" CPD time (sec):" £ Timing.Cpu);

— Determine size of parent directory with its new subdirectory
— information.
Size_After_Creation :• Size_Of ("[]");

— Determine size of new directory itself and bytes added to parent
— directory and record.
Timing_Log.Append_Line

("Directory creation consumed •
£ Integer'Image (

(Siza_After_Creation - Size_Before_Creation) +
Size_Of (Directory_Mame)) fi " bytes.");

— Directory creation and recording finished, close the log file.
Timing_Log.Close_Log;

end Timed_Directory;

176 CMU/SEI-88-TR-21

B.8. Specification TimedWorldSpec

The package specification for Timed_World indicates that it takes one parameter, the name of
the world to be created.

procadura Timad_WorId (World_Nam« : String :• "");

B.9. Procedure Timed_World'Body

The package body Tlmed_Wor1d times the creation of a world. The world is created as an object
in the closest enclosing context that is either a world or directory. It is given the name passed in
the World_Name parameter.

CMU/SEI-88-TR-21 177

— Ada ia a Rational Environment package that uaad to contain procadura
— Ada.Craata_World. Ada.Create_World ia now found in !Command* .Library.
— Craata_World (LM-227) for Operating Syatam Varaion Dalta.

—with Sira_Of, Timing_Log, Timing, Ada;
with Size_Of, Iiming_Log, Timing, Library;
with Editor;

procadura Timed_World (World_Kame : String :- "") ia
— Timaa tha craation of world paaaad in aa quoted string; also
— calculates the apace uaed by the newly created world and the apace
— required by ita parent to atore information about it; it
— records the information in file designated by file read by
-- Timing_Log.Ret rieve_Current_Log_Name.

Size_Before_Creation, —aize of parent directory before creation of
—requested world in bytes

Size_Aftar_Creation : Integer; —aiza of parent directory after creation
—of requested world in bytes

begin
— Tha atring "[]" indicates the current context, which ia
— the library in which tha world ia to be created.
Size_Before_Creation :• Siza_Of ("[]");

— Sand blank line to log file.
Timing_Log.Append_Line;

— Record name of world to be created.
Timing_Log.Append_Line ("Creating world: " £ WorldJName);

— Record CPO time and wall clock time before creation of world invoked.
Timing.Reaet;

— Create the requested world.
Library.Create_Worid (World_Name);

— Calculate and record tha CPU and wall clock time elapaad in the
— craation of tha world in seconds.
Timing_Log.Append_Line {" Clock time: • i Timing.Wall_Time £

CPU time:" £ Timing.Cpu);

— Determine aize of parent directory with ita new "sub-world" information.
Size_After_Creation :- Size_Of ("[]");

— Determine aize of new world itaelf and bytes added to parent
— directory and record.
Timing_Log.Append_Line ("World creation consumed "

£ Integer'Image ((Size_After_Creation -
Size_Before_Creation) +

Size_Of (WorldJName)) £ " bytea.");

— World craation and recording finished; cloae the log file.
Timing_Log.Cloae_Log;

end Timed World;

178 CMU/SEI-88-TR-21

B.10. Specification SizedCopy'Spec

The package specification SizedCopy indicates that the procedure requires one parameter a
string value for Unlt_To_Copy which indicates the Ada unit that is to be copied in order to
measure its size.

proo«dur« Siz«d_Copy (0nit_To_Copy : String := "");

B.11. Procedure SizedCopy'Body

Procedure Sized Copy is described in its comments.

CMU/SEI-88-TR-21 179

— Procadura to copy a specified file, checking the size of tha diractory bafore
— tha fila ia copiad and aftar tha fila ia copied, in ordar to determine tha
— amount of space tha fila and ita directory-level information consumes.

with Profile, Timing_Log, Size_Of, Library,

procedure Sizad_Copy (Onit_To_Copy : String :• "") ia

Library_Size_Before_Copy : Natural :•> 0; — Siza of diractocy in bytes
— before fila addad.

Library_Size_After_Copy : Natural :• 0; — Siza of directory in bytes
— after fila addad.

bagin
— Gat aiza of directory.
Library_Siza_Bafora_Copy :•< Siza_Of ("[]");

— Sand blank lina to log fila indicated in fila raad by
— Timing_Log.ratriava_currant_log_nama.
Iiming_Log.Appand_Line;

— Record name of fila baing copiad.
Timing_Log.Append_Line ("Baf ora copying " £ Dnit_To_Copy) ;

— Record aiza of directory bafora fila copiad to it.
Timing_Log.Append_Line ("library aiza ia " £ Integer'Image

(Library_Siza_Bafora_Copy));
— Copy tha specified fila.
Library.Copy (From »> Onit_To_Copy,

To -> "[]",
Recursive => True,
Response => Profila.Sat,
Copy_Links «> True,
Optiona •> "");

— Below ia tha copy_into command aa it waa implemented for Operating
-- System Varaion Gamma; tha above waa implemented for Operating System
— Varaion Oalta.
— Library.Copy_Into

(Existing •> Onit_To_Copy,
New_Contoxt •> Library . Current_Image, Baf ora »> "",

— Recursive => True, Response => Profila.Gat,
Copy_Links »> True) ;

— Measure directory aiza with tha naw fila.
Library_Siza_Aftar_Copy :- Siza_Of ("[]");

— Record tha aizaa and thair difference.
Timing_Log.Appand_Line ("After copy library aiza ia "

S Integer'Image (Library_Size_After_Copy));

Timing_Log.Append_Line
("A change of " £ Integer'Image

(Library_Siza_Aftar_Copy - Library_Siza_Bafora_Copy)
S " bytaa.");

— All dona, cloaa log fila.
Timing_Log.Cloaa_Log;

end Sizad_Copy;

180 CMU/SEI-88-TR-21

B.12. Binding and Using Instrumentation Code

The code for the instrumented procedures can be placed in the Experimenter's home directory or
placed in a subdirectory of the experiment library called recordit If the latter is done, then a link

from the Experimenter's home directory should be set up to the procedures in recordit by using

the Links.Add command.

The instrumented procedures may be bound to the Rational keyboard by inserting the following
code in the Experimenter's home directory in a file named Rational commands

with Visibl«_K«y_Nam«8;
with Finiah_Coding_Inetrumantation;
with Timad_Diractory;
with Timad_World;
with Sizad Copy;
with Timad_Coda;

proc«dur« Rational_Conmanda ia
uaa Visibia_Kay_Namae;

typa Intant ia (Prompt, Exacuta, Intarrupt);

Action : Intant;

Kay_l : Rational_Kay_Namaa;
Kay_2 : Rational_Kay_Namaa;

bagin
caaa Action ia

whan Prompt =>
caaa K«y_l ia

whan S_F5 •>
Finiah_Coding_Inatrumantation (Both -> Falaa) ;

whan M_F5 ->
Timad_Diractory (DiractoxyJNama »> "");

whan Ca_F5 ->
Timad_World (World_Naaa -> "");

whan F5 •>
Sirad_Copy (Dnit_To_Copy -> "");

whan othara =>
null;

and caa«;

whan Exacuta =>
caaa Kay_l ia

whan C_F5 »>
Timad_Coda;

whan othara =>
null;

and caaa;

whan Intarrupt •>
caaa Kay_2 ia

whan othara =>
null;

and caaa;

and cut;

and Rational_Commanda;

The procedure Rational_Commands should be promoted to coded state in the Experimenter's
home directory. Logging out and logging in will bind the instrumentation commands to the follow-
ing keys:

CMU/SEI-88-TR-21 181

Procedure Key Binding

Timed_Code <Control> <F5>
Finish_Coding_Instrumentation <Shift> <F5>
Timed_Directory <Meta> <F5>
Timed_World <Control> <Shift> <F5>
Sized_Copy <F5>

As long as Rational_Commands is available at login time, the instrumentation procedures will be

bound to the listed key.

In order to time the promotion of an Ada Unit, either place the cursor in a window containing the

image of the unit, or select the unit in a directory listing and type:

<Control> <F5>

followed by
<Shi£t> <F5>

This will cause the time required for compilation and the size of the coded object to be recorded.

To time the creation of a directory, make the world or directory that is to contain the new directory

the current context. Type:

<Meta> <F5>

A command window will open, prompting for Directory_Name; supply the desired name as the

value for the parameter and type:

<Promot>

This causes the creation of a directory with that name and records the time required for the
operation.

To time the creation of a world, make the world or directory that is to contain the new world the

current context. Type:

<Control> <Shift> <F5>

A command window will open, prompting for World_Name; supply the desired name as the value

for the parameter and type:

<Promot>

This causes the creation of a world with that name and records the time required for the opera-
tion.

To copy an object and determine its size, type:

<F5>

A command window will open, prompting for Unit_To_Copy; supply the name of the unit to be

copied, and type:

<Promot>

This will copy the named object to the current context and log the amount of disk space used by

the object in the current context.

182 CMU/SEI-88-TR-21

Appendix C: ACEC Suite Timing Harnesses

The following routines must be compiled successfully to run the ACEC Test Suite.

C.1. Package Specification CpuTime- Spec
packaga Cpu Tim* ia

function Cpu_Clock raturn Duration;

•nd Cpu_Tima;

C.2. Package Cpu_Time'Body
with Calendar, Syat«m_Otilitiaa;

— Syatam Otilitiaa ia a standard Rational utility packaga.

packaga body Cpu_Tima ia

function Cpu_Clock raturn Duration ia
bagin

raturn Syat*n_Utiliti*a.Cpu;
•nd Cpu_Clock;

•nd Cpu_Tim«;

C.3. Specification Harness Many'Spec
procadura Harn«aa_Many;

C.4. Procedure Harness_Many'Body

CMU/SEI-88-TR-21 183

with Taxt_Io, Calendar, Systam_Otiliti«a, Iim«_Otiliti«a, Compilation,
Profile, Log, Library, File_Otiliti»s, Program, Io_Packaga;

procadura Harnaaa_Many is

— Filaa for raaulta ganaratad by ACEC run
Comp_Data_File : Taxt_Io.Fila_Typa;
Inatr_Data_Fila : Taxt_Io.Fila_Typa;
Run_Data_Fila : Taxt_Io.File_Typa;
Total_Tima_Fila : Taxt_Io.Fila_Typa;

— Iha following ara uaad for raading namaa of ACEC program
Sourca_Fila : Taxt_Io.Fila_Typa;
Taat_Nama : String (1 .. 7) ;
Last : Natural;

— Varioua diractory-dapandant hardwirad namaa

— Sourca World containa tha Ada objacta comprising
— tha ACEC benchmark taata.
Sourca_Horld : constant String :» " !users . experimenter. acec2 " ;

-- Liat_of_ACZC_?rograma ia a taxt fila containing tha namaa of
— tha Ada objacta that compriaa tha ACEC benchmarks.
Liat_Of_Acac_Programa : constant String :• Sourca_World £ ".acac_liat";

procadura Harnaaa (Taat_Fila : in Xo_Packaga.Nama_Typa) ia separate;

bagin
— Craata tha logging filaa
Taxt_Io.Craata (Fila «> Comp_Data_Fila,

Mode => Taxt_Io.Out_Fila,
Mama => " 'users . experimenter. acec2 . C_data" , .
Form •> " ") ;

Taxt_Io. Craata (Fila -> Inatr_Data_Fila,
Moda -> Taxt_lo.Out_Fila,
Nama •> " !uaare. experimenter±c»c2 .i_data",
Form •> "");

Taxt_Io.Cloaa (Fila -> Inatr_Data_Fila);

Taxt_Io.Craata (Fila »> Run_Data_Fila,
Moda »> Taxt_Io.Out_Fila,
Nama »> " !users . experimenter. acec2 .R_data",
Form -> " ") ;

Text_Io.Craata (Fila -> Total_Tima_Fila,
Moda •> Taxt_Io.Out_Fila,
Nama -> " "users . experimenter. acec2 . Total_Time_Data" ,
Form -> • ");

— Opan fila containing taat procadura namaa.
Taxt_Io.Opan (Fila => Sourca_Fila,

Moda •> Taxt_Io.In_Fila,
Nama => Liat_Of_Acac_Programa,
Form »> •");

Taxt_Io.Put_Lina (Total_Tima_Fila,
"ACEC run bagina at " G Tima_Otilitiea.Imaga

(TimaJJtilitiea.Gat_Tima)) ;

whila not Taxt_Io.End_Of_Fila (Sourca_Fila) loop

Taxt_Io.Gat_Line (Sourca_Fila, Taat_Nama, Laat);
Harnaaa (Taat_Nama (1 .. Laat));

184 CMU/SEI-88-TR-21

and loop;

Taxt_Io.Put_Lina (Total_Tima_Fila,
"ACEC run anda at " £ Tima_Utilitia«.Imaga

(Tima_Utilitias.Gat_Tima));

Taxt_Io. Cloaa (Fila «> Sourca_Fila);
Taxt_Io. Cloaa (Fila «> Cons>_Data_Fila) ;
Taxt_Io.Cloaa (Fill »> Run_Data_Fila);
Taxt_Io.Cloaa (Fila •> Total_Tima_Fila);

Taxt_Io.Put ("All tasta hava baan submittad for taating");

axcaption
whan othara •>

— Sava raaulta.
Taxt_Io.Cloaa (Fila •> Sourca_Fila);
Taxt_Io.Cloaa (Fila *>> Comp_Data_Fila);
Taxt_Io.Cloaa (Fila => Run_Data_Fila);

— Log daath point.
Taxt_Io.Put_Lina (Total_Tima_Fila,

"Run diad on " fi Ta«t_Nama (1 .. Laat));

Taxt_Io. Put_Lina (Total_Tima_Fila,
"ACEC run anda at " & Tiaa_Otilitiaa.Imaga

(TimaJJtilitiaa.Gat_Tima));

Taxt_Io.Cloaa (Fila •> Total_Tima_Fila);

— Notify Initiator of ACEC run.
Taxt_Io.Put_Lina

("++4-H-H-++++++++++++++++++++'
Taxt_Io.Put_Lina

("+++++++++++++ KABOOM! ! !
Taxt_Io.Put_Lina

and Harnaaa_Many;

C.5. Harness (Source State to Coded State)

The following is the Ada separate needed to compile the ACEC tests, already in Rational source
state to Rational coded state. This version of Harness also records link and load time as a part
of program execution time.

CMU/SEI-88-TR-21 185

with Io_Excaptiona, Directory_TooIs;
Ul* Dir«ctory_Tool»;
aapa.ra.ta (Harness_Many)
procadura Harness (Test_Filo : in Io_Package.Narae_Type) ia

subtype Cons tramed_Durat ion ia Duration delta 0.01;

Y«»r : Calendar.Year_Number;
Month : Calendar.Month_Number;
Day : Calandar.Day_Numbar;
Begin_Time : Calendar.Day_Duration;
End_Time : Calendar.Day_Duration;
Total_Elapaad_Tlma : Calendar.Day_Duration;

Beg_Cpu_Time : ConatrainadJDuration;
End_Cpu_Time : Constrainod_Duration;
Total_Cpu_Tima : Constrained_Duration;

— Tha aoftwara adda no commanta to Compilation, Run_Tiroe or
— Instrumentation data records.
Comment_Width : constant Natural :• 0;
Commanta : constant String (1 .. Commant_Width) :•

(othara -> ' ');

Compilation_Data :
Io_Package . Compilation_Record_Type (Commant_Width) ;

Run_Iima_Data :
Io_Package.Run_Time_Record_Type (Comment_Width);

— A bug in tha Rational Environment prevents a procedure that compiles
— an Ada object from measuring its siza. We therefore return an
— arbitrary value until tha bug in tha Rational Environment is fixed,
function Tha_Qbjact_Coda_Siza_Of

(Teat_File : in Io_Package.Namo_Type) return Natural is
Obj : Object.Handle := Naming.Resolution (Tast_Fila 4 '"body");

begin
return Natural {Statistics.Ob].ct_Siz. (Obj) / 8);

and Tha_Objact_Coda_Siza_0£;

bagin
— ataga 1: Recording Compilation and Link Time
-- record tha currant alapaad and CPU times before compilation —
Calandar.Split (Calandar.Clock, Year, Month, Day, Begin_Time);

Bag_Cpu_Tima :« System_Otilities . Cpu;

— compile tha taat + racord and times —
Compilation. Promote (Unit => "! users . experimenter. acac2 . " & Test_File,

Scopa => Compilation.Subunits_Too,
Goal => Compilation.Codad,
Limit => Compilation.Sama_World,
Effort_Only «> Falsa,
Rasponsa -> Profila.Get);

End_Cpu_Time : = Systam_Utillties.Cpu;

Calandar.Split (Calandar.Clock, Year, Month, Day, End_Time);

— calculate tha alapaad times (in hundredths of aaconda) —

Total_Cpu_Tima := End_Cpu_Tima - Bag_Cpu_Tima;
Total Elapsod_Time :• End_Time - Bagin Time;

— put tha compilation statistics in tha output racord —
Compilation_Data :»

186 CMU/SEI-88-TR-21

(Commant_Width, Taet_File, Total_Elapaad_Time, Total_Cpu_Time,
Tha_Object_Code_Size_Of (Teat_File),
Commenta);

Io_P»ckag» . Put (File »> Comp_Data_File,
Value => Compilation_Data);

— atage 2: Recording Execution Tim* —
-- rtcord the currant elapaed and CPU timea bafora execution —
Calandar. Split (Calandar .Clock., Year, Month, Day, B*gin_Tima);
Bag_Cpu_Time :» Syatem_Otilitiea.Cpu;

— axacuta taat + racord and timaa—
Program.Run (S => Taat_Fila, Contaxt => " luaara . experimenter. acac2") ;
End_Cpu_Tima :« Syatem_Utilitiea.Cpu;

Calandar. Split (Calandar.Clock, Year, Month, Day, End_Tima) ;

— calculate tha alapaad timaa (in hundredth* of aeconda) —
Total_Cpu_Tima :» End_Cpu_Tim* - Bag_Cpu_Time;
Total_Elapaad_Tima :• End_Tima - B*gin_Time;

-- put tha runtima atatiatica in ona output racord —
Run_Time_Data : =

(Commant_Width. Teat_File, Total_Elapaod_Time,
Total_Cpu_Tima, 512, 512, Comments);

Xo_Paclcaga.Put (Run_Data_File, Run_Tima_Data) ;

— ataga 3: Append Instrumentation Statiatica to
Xnatrumentation_Statiatica_Fila;

File_Otilitiea .Append (Sourca -> " !users . experimenter. acec2 . Inatr" .
Target •> " ! usera . experimenter. acac2 .1_Data") ,

and Harneaa;

C.6. Harness (Text File to Loaded Main Programs)

This version of the Ada separate compiles the ACEC test suite programs from ASCII file state to
Rational loaded main programs. It counts compilation time as time to promote from text file to
coded state and time to load. Runtime represents the time to execute the already loaded main
program. (Each ACEC test program is a main program.)

CMU/SEI-88-TR-21 187

with Io_Exceptions, Diractory_Tools;
uaa Directory_Toola;
separate (Harnaas_Many)
procedure Harness (Test_Fila : in Io_Package.Nama_Typa) ia

subtype Constrainad_Duration ia Duration dalta 0.01;

Year : Calendar.Year_Number;
Month : Calendar.Month_Number;
Day : Calendar.Day_Number;
Begin_Time : Calandar.Day_Duration;
End_Tima : Calendar.Day_Duration;
Total_Elapsad_Tima : Calandar.Day_Duration;

Beg_Cpu_Tima : Constrainad_Duration;
End_Cpu_Tima : Conatrained_Duration;
Total_Cpu_Time : Conatrainad_Duration;

— Tha aoftwara adda no comments to Compilation, Run_Time, or
— Instrumentation data racorda.
Comment_Width : constant Natural :» 0;
Commenta : constant String (1 .. Comment_Widthj :•

(othara -> ' ') ;

Compilation_Data :
Io_Package.Compilation_Record_Typo (Commant_Width);

Run_Tima_Data :
Io_P ackage . Run_T ime_Reco rd_Type (Comment_Wi dth) ;

— A bug in tha Rational Environment pravanta a procedure that compiles
— an Ada object from measuring ita aise. We therefore return an
— arbitrary value until the bug in the Rational Environment ia fixed,
function The_C(bject_Coda_Siie_Of

(Tast_Fila : in Io_Package.Name_Type) return Natural ia
Obj : Object.Handle := Naming.Resolution (Test_Fila G "body");

begin
return Natural (Statistics.Object_Size (Obj) / 8);

and The_Obj*ct_Code_3ira_Of;

begin
— ataga 1: Recording Compilation and Link Time
— record the current elapaed and CPO times before compilation --
Calendar.Split (Calendar.Cloak, Yaar, Month, Day, Begin_Time);

Beg_Cpu_Time :» Syetem_Otilities.Cpu;

— compile tha teat + record end times —
Compilation.Compile (File_Name =>

" <usera . experimenter, acec. " fi Teat_File,
Library »> " ! uaara . experimenter. acec3 ",
Goal => Compilation.Coded,
Liat => Falsa,
Sourca_Optiona »> "",
Limit => Compilation.Sama_World
Reaponae => Profile.Get);

Compilation.Load (Fila_Name =>
" ! uaera . experimenter. acec3. " fi
Taat_Fila(l..fi).

To => "! uaera. experimenter. acec4",
Reaponae •> <PROFILE>);

End_Cpu_Time := System Utilities . Cpu;

Calendar.Split (Calandar.Clock, Year, Month, Day, End Time);

188 CMU/SEI-88-TR-21

— calculate tha alapsad timas (in hundredtha of saconds) —

Total_Cpu_Tim* :» End_Cpu_Tima - Bag_Cpu_Tima;
Tota.l_Elapaad._Tim* :• End_Tima - Bagin_Tima;

— put tha compilation statistics in tha output racord —
Compilation_Data :•

(Commant_Width, Tast_Fila, Total_Elapsad_Tima, Total_Cpu_Tima,
Tha_Objact_Cod*_Siza_Of (Tast_Fila),
Commants);

Io_Packaga.Put (Fila •> Comp_Data_Fila,
Valua •> Compilation_Data);

— staga 2: Racording Exacution Tima —
— racord tha currant alapsad and CPU timas bafora axacution --
Calandar.Split (Calandar.Clock, Yaar, Month, Day, Bagin_Tima);
Bag_Cpu_Tima :« Systam_Otilitias-Cpu;

— axacuta tast + racord and timas—
Program.Run (S => Tast_Fila, Contaxt -> " !usars . experimenter, acaci") ,
End_Cpu_Tima :« Systam_Otilitiaa.Cpu;

Calandar.Split (Calandar.Clock, Y«»r, Month, Day, End_Tima);

— calculata tha alapsad timas (in hundradths of saconda) —
Total_Cpu_Tima :=• End_Cpu_Tima - Bag_Cpu Tima;
Total_Elapsad_Tima :— End_Tima - Bagin_Tima;

— put tha runtima statistics in ona output racord —
Run_Tima_Data :•

(Cosmant_Width, Tast_Fila, Total_Elapsad_Tima,
Total_Cpu_Tima, 512, 512, Commants);

Io_Packag*.Put (Run_Data_Fila, Run_Tima_Data);

— staga 3: Appand Instrumantation Statistics to
Instnimantation_3tatistics_Fila;

Fila_Otilitias.Appand (Sourca •> " 'usars experimenter. acac2 . Instr",
Targat -> " !usars . experimenter. ac*c2 .1_Data") ;

and Harnass;

C.7. Commands to Run the ACEC Test Suite

The above procedures, specifications, and either of the separates must be compiled in addition to
the support programs provided by the ACEC Test Suite.

The ACEC Test Suite can then be run in batch mode by providing the following command in a
command window and promoting the command to execute.

Program.Run Job(S => "Barnaas",
Dabug => Falsa,
Contaxt «> " IDaars . experimenter. Ac«c2" ,
Aftar => 0.0,
Options »> "Output =: Run_Job_Output; Error -: Run_Job_Error",
Rasponsa -> "<PROFILE>");

Note that a value of positive seconds may be provided for the After parameter. The Harness
would then not start executing until after that number of seconds had elapsed since the command
window was promoted.

CMU/SEI-88-TR-21 189

References

[1] Hook, Audrey A., Riccardi, Gregory A., Vilot, Michael, Welke, Stephen.
User's Manual for the Prototype Ada Compiler Evaluation Capability (ACEC) Version 1.
Institute for Defense Analyses, 1801 N. Beauregard Street, Alexandria, VA 22311, Oc-

tober 1985.

[2] VAX Ada Language Reference Manual
Digital Equipment Corporation Maynard, Massachusetts.

[3] Bassman, Mitchell J., Dahlke, Carl.
An Evaluation of the Rational R100 Development System Using the DoD Software Engi-

neering Institute Methodology.
Computer Sciences Corporation, January 1987.

[4] Feiler, Peter H., Dart, Susan A., Downey, Grace.
Evaluation of the Rational Environment.
Technical Report CMU/SEI-88-TR-15, Software Engineering Institute, Carnegie Mellon

University, July 1988.

[5] Feiler, P. H., Smeaton, R.
777© Project Management Experiment: Evaluation of Ada Environments.
Technical Report CMU/SEI-88-TR-7, Software Engineering Institute, Carnegie Mellon Uni-

versity, July 1988.

[6] Rational Environment documentation.
User's Guide (8001A-05), Basic Operations Manual (8001A-03), and Reference Manuals

1-11'(8001A-03).
Delta Release, Rev 5.0, 1987.

[7] Weiderman, N.H., et al.
Evaluation of Ada Environments.
Technical Report CMU/SEI-87-TR-1, ADA180905, Software Engineering Institute, Carne-

gie Mellon University, January 1987.

190 CMU/SEI-88-TR-21

UNLIMITF.nr JTNr.T.AgSTVTFn
KCUBITV CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

la, REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
lb. RESTRICTIVE MARKINGS

NONE

2a. SECURITY CLASSIFICATION AUTHORITY

N/A
2b. OECLASSIFICATION/OOWNGRAOING SCHEDULE

N/A

3. OISTRI8UTION/AVAILABILITY OF REPORT

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

a. PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-88-TR-21

5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESD-TR-88-22

6a. NAME OF PERFORMING ORGANIZATION

SOFTWARE ENGINEERING INSTITUTE

6b. OFFICE SYMBOL
(If applicable)

SEI

7a. NAME OF MONITORING ORGANIZATION

SEI JOINT PROGRAM OFFICE
6c. ADDRESS (City. Slate and ZIP Code)
CARNEGIE MELLON UNIVERSITY
PITTSBURGH, PA 15213

7b. ADDRESS (City, Slate and ZIP Code!
ESD/XRS1
HANSCOM AIR FORCE BASE, MA 01731

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

SEI JOINT PROGRAM OFFICE

8b. OFFICE SYMBOL
(If applicable)

SEI JPO

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962885C0003

8c. ADDRESS (City. State and ZIP Code)

CARNEGIE MELLON UNIVERSITY
SOFTWARE ENGINEERING INSTITUTE JPO
PTTTSBTTRRH. PA 15213

10. SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO.

11 ^MRt»fect%Mst^ifpf§J FOR THE EVALUATION
OF THE RATTONAT FNVTRONMENT

PROJECT
NO.

N/A

TASK
NO.

N/A

WORK UNIT
NO.

N/A

12. PERSONAL AUTHOR(S)

GRACE DOWNEY, MITCHELL BASSMAN, CARL DAHLKE
13a. TYPE OF REPORT

FINAL
13b. TIME COVERED

FROM TO

14. DATE OF REPORT (Yr., Mo.. Day)

SEPTEMBER, 1988

15. PAGE COUNT

_L9_g_
16. SUPPLEMENTARY NOTATION

COSATI CODES

FIELD SUB. GR.

18. SUBJECT TERMS (Continue on reuerte if necetiary and identify 6y bloc* number)

RATIONAL ENVIRONMENT, ENVIRONMENT EVALUATION, ENVIRONMENT

EVALUATION EXPERIMENTS. F.XPF.RTMFNT TRAN^BTPTQ
19. ABSTRACT (Continue on reverse if necessary and identify by block number)

THIS REPORT SUPPLEMENTS THE SEI REPORT EVALUATION OF THE RATIONAL ENVIRONMENT (CMU/SEI-
88-TR-15) BY PETER FEILER, SUSAN DART, AND GRACE DOWNEY. IT CONTAINS THE INSTANTIATION
OF THE EXPERIMENTS PRESENTED IN THE EVALUATION OF ADA ENVIRONMENTS BY NELSON WEIDERMAN,
ET AL. (SEE [7]). OVERALL CONCLUSIONS AND ANALYSIS OF THE RATIONAL ENVIRONMENT CAN BE
FOUND IN EVALUATION OF THE RATIONAL ENVIRONMENT.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITEO XX SAME AS RPT • OTIC USERS XX

21 ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITED

22a. NAME OF RESPONSIBLE INDIVIDUAL

KARL SHINGLER
22b TELEPHONE NUMBER

(Include Area Code)
(412) 268-7630

DD FORM 1473, 83 APR

22c OFFICE SYMBOL

SEI JPO

EDITION OF 1 JAN 73 IS OBSOLETE. UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

